This class consists exclusively of static methods that operate on or return collections. It contains polymorphic algorithms that operate on collections, "wrappers", which return a new collection backed by a specified collection, and a few other odds and ends.

The methods of this class all throw a NullPointerException if the collections or class objects provided to them are null.

The documentation for the polymorphic algorithms contained in this class generally includes a brief description of the implementation. Such descriptions should be regarded as implementation notes, rather than parts of the specification. Implementors should feel free to substitute other algorithms, so long as the specification itself is adhered to. (For example, the algorithm used by sort does not have to be a mergesort, but it does have to be stable.)

The "destructive" algorithms contained in this class, that is, the algorithms that modify the collection on which they operate, are specified to throw UnsupportedOperationException if the collection does not support the appropriate mutation primitive(s), such as the set method. These algorithms may, but are not required to, throw this exception if an invocation would have no effect on the collection. For example, invoking the sort method on an unmodifiable list that is already sorted may or may not throw UnsupportedOperationException.

This class is a member of the Java Collections Framework.

@author
Josh Bloch
@author
Neal Gafter
@version
1.89, 07/28/04
@since
1.2
See Also
The empty list (immutable). This list is serializable.
See Also
The empty map (immutable). This map is serializable.
@since
1.3
See Also
The empty set (immutable). This set is serializable.
See Also
Adds all of the specified elements to the specified collection. Elements to be added may be specified individually or as an array. The behavior of this convenience method is identical to that of c.addAll(Arrays.asList(elements)), but this method is likely to run significantly faster under most implementations.

When elements are specified individually, this method provides a convenient way to add a few elements to an existing collection:

     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
 
Parameters
cthe collection into which elements are to be inserted
athe elements to insert into c
Return
true if the collection changed as a result of the call
Throws
UnsupportedOperationExceptionif c does not support the add method
NullPointerExceptionif elements contains one or more null values and c does not support null elements, or if c or elements are null
IllegalArgumentExceptionif some aspect of a value in elements prevents it from being added to c
@since
1.5
Searches the specified list for the specified object using the binary search algorithm. The list must be sorted into ascending order according to the natural ordering of its elements (as by the sort(List) method, above) prior to making this call. If it is not sorted, the results are undefined. If the list contains multiple elements equal to the specified object, there is no guarantee which one will be found.

This method runs in log(n) time for a "random access" list (which provides near-constant-time positional access). If the specified list does not implement the RandomAccess interface and is large, this method will do an iterator-based binary search that performs O(n) link traversals and O(log n) element comparisons.

Parameters
listthe list to be searched.
keythe key to be searched for.
Return
index of the search key, if it is contained in the list; otherwise, (-(insertion point) - 1). The insertion point is defined as the point at which the key would be inserted into the list: the index of the first element greater than the key, or list.size(), if all elements in the list are less than the specified key. Note that this guarantees that the return value will be >= 0 if and only if the key is found.
Throws
ClassCastExceptionif the list contains elements that are not mutually comparable (for example, strings and integers), or the search key in not mutually comparable with the elements of the list.
Searches the specified list for the specified object using the binary search algorithm. The list must be sorted into ascending order according to the specified comparator (as by the Sort(List, Comparator) method, above), prior to making this call. If it is not sorted, the results are undefined. If the list contains multiple elements equal to the specified object, there is no guarantee which one will be found.

This method runs in log(n) time for a "random access" list (which provides near-constant-time positional access). If the specified list does not implement the RandomAccess interface and is large, this method will do an iterator-based binary search that performs O(n) link traversals and O(log n) element comparisons.

Parameters
listthe list to be searched.
keythe key to be searched for.
cthe comparator by which the list is ordered. A null value indicates that the elements' natural ordering should be used.
Return
index of the search key, if it is contained in the list; otherwise, (-(insertion point) - 1). The insertion point is defined as the point at which the key would be inserted into the list: the index of the first element greater than the key, or list.size(), if all elements in the list are less than the specified key. Note that this guarantees that the return value will be >= 0 if and only if the key is found.
Throws
ClassCastExceptionif the list contains elements that are not mutually comparable using the specified comparator, or the search key in not mutually comparable with the elements of the list using this comparator.
Returns a dynamically typesafe view of the specified collection. Any attempt to insert an element of the wrong type will result in an immediate ClassCastException. Assuming a collection contains no incorrectly typed elements prior to the time a dynamically typesafe view is generated, and that all subsequent access to the collection takes place through the view, it is guaranteed that the collection cannot contain an incorrectly typed element.

The generics mechanism in the language provides compile-time (static) type checking, but it is possible to defeat this mechanism with unchecked casts. Usually this is not a problem, as the compiler issues warnings on all such unchecked operations. There are, however, times when static type checking alone is not sufficient. For example, suppose a collection is passed to a third-party library and it is imperative that the library code not corrupt the collection by inserting an element of the wrong type.

Another use of dynamically typesafe views is debugging. Suppose a program fails with a ClassCastException, indicating that an incorrectly typed element was put into a parameterized collection. Unfortunately, the exception can occur at any time after the erroneous element is inserted, so it typically provides little or no information as to the real source of the problem. If the problem is reproducible, one can quickly determine its source by temporarily modifying the program to wrap the collection with a dynamically typesafe view. For example, this declaration:

     Collection<String> c = new HashSet<String>();
 
may be replaced temporarily by this one:
     Collection<String> c = Collections.checkedCollection(
         new HashSet<String>(), String.class);
 
Running the program again will cause it to fail at the point where an incorrectly typed element is inserted into the collection, clearly identifying the source of the problem. Once the problem is fixed, the modified declaration may be reverted back to the original.

The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.

The returned collection will be serializable if the specified collection is serializable.

Parameters
cthe collection for which a dynamically typesafe view is to be returned
typethe type of element that c is permitted to hold
Return
a dynamically typesafe view of the specified collection
@since
1.5
Returns a dynamically typesafe view of the specified list. Any attempt to insert an element of the wrong type will result in an immediate ClassCastException. Assuming a list contains no incorrectly typed elements prior to the time a dynamically typesafe view is generated, and that all subsequent access to the list takes place through the view, it is guaranteed that the list cannot contain an incorrectly typed element.

A discussion of the use of dynamically typesafe views may be found in the documentation for the checkedCollection method.

The returned list will be serializable if the specified list is serializable.

Parameters
listthe list for which a dynamically typesafe view is to be returned
typethe type of element that list is permitted to hold
Return
a dynamically typesafe view of the specified list
@since
1.5
Returns a dynamically typesafe view of the specified map. Any attempt to insert a mapping whose key or value have the wrong type will result in an immediate ClassCastException. Similarly, any attempt to modify the value currently associated with a key will result in an immediate ClassCastException, whether the modification is attempted directly through the map itself, or through a Map.Entry instance obtained from the map's entry set view.

Assuming a map contains no incorrectly typed keys or values prior to the time a dynamically typesafe view is generated, and that all subsequent access to the map takes place through the view (or one of its collection views), it is guaranteed that the map cannot contain an incorrectly typed key or value.

A discussion of the use of dynamically typesafe views may be found in the documentation for the checkedCollection method.

The returned map will be serializable if the specified map is serializable.

Parameters
mthe map for which a dynamically typesafe view is to be returned
keyTypethe type of key that m is permitted to hold
valueTypethe type of value that m is permitted to hold
Return
a dynamically typesafe view of the specified map
@since
1.5
Returns a dynamically typesafe view of the specified set. Any attempt to insert an element of the wrong type will result in an immediate ClassCastException. Assuming a set contains no incorrectly typed elements prior to the time a dynamically typesafe view is generated, and that all subsequent access to the set takes place through the view, it is guaranteed that the set cannot contain an incorrectly typed element.

A discussion of the use of dynamically typesafe views may be found in the documentation for the checkedCollection method.

The returned set will be serializable if the specified set is serializable.

Parameters
sthe set for which a dynamically typesafe view is to be returned
typethe type of element that s is permitted to hold
Return
a dynamically typesafe view of the specified set
@since
1.5
Returns a dynamically typesafe view of the specified sorted map. Any attempt to insert a mapping whose key or value have the wrong type will result in an immediate ClassCastException. Similarly, any attempt to modify the value currently associated with a key will result in an immediate ClassCastException, whether the modification is attempted directly through the map itself, or through a Map.Entry instance obtained from the map's entry set view.

Assuming a map contains no incorrectly typed keys or values prior to the time a dynamically typesafe view is generated, and that all subsequent access to the map takes place through the view (or one of its collection views), it is guaranteed that the map cannot contain an incorrectly typed key or value.

A discussion of the use of dynamically typesafe views may be found in the documentation for the checkedCollection method.

The returned map will be serializable if the specified map is serializable.

Parameters
mthe map for which a dynamically typesafe view is to be returned
keyTypethe type of key that m is permitted to hold
valueTypethe type of value that m is permitted to hold
Return
a dynamically typesafe view of the specified map
@since
1.5
Returns a dynamically typesafe view of the specified sorted set. Any attempt to insert an element of the wrong type will result in an immediate ClassCastException. Assuming a sorted set contains no incorrectly typed elements prior to the time a dynamically typesafe view is generated, and that all subsequent access to the sorted set takes place through the view, it is guaranteed that the sorted set cannot contain an incorrectly typed element.

A discussion of the use of dynamically typesafe views may be found in the documentation for the checkedCollection method.

The returned sorted set will be serializable if the specified sorted set is serializable.

Parameters
sthe sorted set for which a dynamically typesafe view is to be returned
typethe type of element that s is permitted to hold
Return
a dynamically typesafe view of the specified sorted set
@since
1.5
Copies all of the elements from one list into another. After the operation, the index of each copied element in the destination list will be identical to its index in the source list. The destination list must be at least as long as the source list. If it is longer, the remaining elements in the destination list are unaffected.

This method runs in linear time.

Parameters
destThe destination list.
srcThe source list.
Throws
IndexOutOfBoundsExceptionif the destination list is too small to contain the entire source List.
UnsupportedOperationExceptionif the destination list's list-iterator does not support the set operation.
Returns true if the two specified collections have no elements in common.

Care must be exercised if this method is used on collections that do not comply with the general contract for Collection. Implementations may elect to iterate over either collection and test for containment in the other collection (or to perform any equivalent computation). If either collection uses a nonstandard equality test (as does a SortedSet whose ordering is not compatible with equals, or the key set of an IdentityHashMap ), both collections must use the same nonstandard equality test, or the result of this method is undefined.

Note that it is permissible to pass the same collection in both parameters, in which case the method will return true if and only if the collection is empty.

Parameters
c1a collection
c2a collection
Throws
NullPointerExceptionif either collection is null
@since
1.5
Returns the empty list (immutable). This list is serializable.

This example illustrates the type-safe way to obtain an empty list:

     List<String> s = Collections.emptyList();
 
Implementation note: Implementations of this method need not create a separate List object for each call. Using this method is likely to have comparable cost to using the like-named field. (Unlike this method, the field does not provide type safety.)
@since
1.5
See Also
Returns the empty map (immutable). This map is serializable.

This example illustrates the type-safe way to obtain an empty set:

     Map<String, Date> s = Collections.emptyMap();
 
Implementation note: Implementations of this method need not create a separate Map object for each call. Using this method is likely to have comparable cost to using the like-named field. (Unlike this method, the field does not provide type safety.)
@since
1.5
See Also
Returns the empty set (immutable). This set is serializable. Unlike the like-named field, this method is parameterized.

This example illustrates the type-safe way to obtain an empty set:

     Set<String> s = Collections.emptySet();
 
Implementation note: Implementations of this method need not create a separate Set object for each call. Using this method is likely to have comparable cost to using the like-named field. (Unlike this method, the field does not provide type safety.)
@since
1.5
See Also
Returns an enumeration over the specified collection. This provides interoperability with legacy APIs that require an enumeration as input.
Parameters
cthe collection for which an enumeration is to be returned.
Return
an enumeration over the specified collection.
See Also
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Replaces all of the elements of the specified list with the specified element.

This method runs in linear time.

Parameters
listthe list to be filled with the specified element.
objThe element with which to fill the specified list.
Throws
UnsupportedOperationExceptionif the specified list or its list-iterator does not support the set operation.
Returns the number of elements in the specified collection equal to the specified object. More formally, returns the number of elements e in the collection such that (o == null ? e == null : o.equals(e)).
Parameters
cthe collection in which to determine the frequency of o
othe object whose frequency is to be determined
Throws
NullPointerExceptionif c is null
@since
1.5
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Returns the starting position of the first occurrence of the specified target list within the specified source list, or -1 if there is no such occurrence. More formally, returns the lowest index i such that source.subList(i, i+target.size()).equals(target), or -1 if there is no such index. (Returns -1 if target.size() > source.size().)

This implementation uses the "brute force" technique of scanning over the source list, looking for a match with the target at each location in turn.

Parameters
sourcethe list in which to search for the first occurrence of target.
targetthe list to search for as a subList of source.
Return
the starting position of the first occurrence of the specified target list within the specified source list, or -1 if there is no such occurrence.
@since
1.4
Returns the starting position of the last occurrence of the specified target list within the specified source list, or -1 if there is no such occurrence. More formally, returns the highest index i such that source.subList(i, i+target.size()).equals(target), or -1 if there is no such index. (Returns -1 if target.size() > source.size().)

This implementation uses the "brute force" technique of iterating over the source list, looking for a match with the target at each location in turn.

Parameters
sourcethe list in which to search for the last occurrence of target.
targetthe list to search for as a subList of source.
Return
the starting position of the last occurrence of the specified target list within the specified source list, or -1 if there is no such occurrence.
@since
1.4
Returns an array list containing the elements returned by the specified enumeration in the order they are returned by the enumeration. This method provides interoperability between legacy APIs that return enumerations and new APIs that require collections.
Parameters
eenumeration providing elements for the returned array list
Return
an array list containing the elements returned by the specified enumeration.
@since
1.4
Returns the maximum element of the given collection, according to the natural ordering of its elements. All elements in the collection must implement the Comparable interface. Furthermore, all elements in the collection must be mutually comparable (that is, e1.compareTo(e2) must not throw a ClassCastException for any elements e1 and e2 in the collection).

This method iterates over the entire collection, hence it requires time proportional to the size of the collection.

Parameters
collthe collection whose maximum element is to be determined.
Return
the maximum element of the given collection, according to the natural ordering of its elements.
Throws
ClassCastExceptionif the collection contains elements that are not mutually comparable (for example, strings and integers).
NoSuchElementExceptionif the collection is empty.
See Also
Returns the maximum element of the given collection, according to the order induced by the specified comparator. All elements in the collection must be mutually comparable by the specified comparator (that is, comp.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the collection).

This method iterates over the entire collection, hence it requires time proportional to the size of the collection.

Parameters
collthe collection whose maximum element is to be determined.
compthe comparator with which to determine the maximum element. A null value indicates that the elements' natural ordering should be used.
Return
the maximum element of the given collection, according to the specified comparator.
Throws
ClassCastExceptionif the collection contains elements that are not mutually comparable using the specified comparator.
NoSuchElementExceptionif the collection is empty.
See Also
Returns the minimum element of the given collection, according to the natural ordering of its elements. All elements in the collection must implement the Comparable interface. Furthermore, all elements in the collection must be mutually comparable (that is, e1.compareTo(e2) must not throw a ClassCastException for any elements e1 and e2 in the collection).

This method iterates over the entire collection, hence it requires time proportional to the size of the collection.

Parameters
collthe collection whose minimum element is to be determined.
Return
the minimum element of the given collection, according to the natural ordering of its elements.
Throws
ClassCastExceptionif the collection contains elements that are not mutually comparable (for example, strings and integers).
NoSuchElementExceptionif the collection is empty.
See Also
Returns the minimum element of the given collection, according to the order induced by the specified comparator. All elements in the collection must be mutually comparable by the specified comparator (that is, comp.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the collection).

This method iterates over the entire collection, hence it requires time proportional to the size of the collection.

Parameters
collthe collection whose minimum element is to be determined.
compthe comparator with which to determine the minimum element. A null value indicates that the elements' natural ordering should be used.
Return
the minimum element of the given collection, according to the specified comparator.
Throws
ClassCastExceptionif the collection contains elements that are not mutually comparable using the specified comparator.
NoSuchElementExceptionif the collection is empty.
See Also
Returns an immutable list consisting of n copies of the specified object. The newly allocated data object is tiny (it contains a single reference to the data object). This method is useful in combination with the List.addAll method to grow lists. The returned list is serializable.
Parameters
nthe number of elements in the returned list.
othe element to appear repeatedly in the returned list.
Return
an immutable list consisting of n copies of the specified object.
Throws
IllegalArgumentExceptionif n < 0.
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Replaces all occurrences of one specified value in a list with another. More formally, replaces with newVal each element e in list such that (oldVal==null ? e==null : oldVal.equals(e)). (This method has no effect on the size of the list.)
Parameters
listthe list in which replacement is to occur.
oldValthe old value to be replaced.
newValthe new value with which oldVal is to be replaced.
Return
true if list contained one or more elements e such that (oldVal==null ? e==null : oldVal.equals(e)).
Throws
UnsupportedOperationExceptionif the specified list or its list-iterator does not support the set method.
@since
1.4
Reverses the order of the elements in the specified list.

This method runs in linear time.

Parameters
listthe list whose elements are to be reversed.
Throws
UnsupportedOperationExceptionif the specified list or its list-iterator does not support the set method.
Returns a comparator that imposes the reverse of the natural ordering on a collection of objects that implement the Comparable interface. (The natural ordering is the ordering imposed by the objects' own compareTo method.) This enables a simple idiom for sorting (or maintaining) collections (or arrays) of objects that implement the Comparable interface in reverse-natural-order. For example, suppose a is an array of strings. Then:
 		Arrays.sort(a, Collections.reverseOrder());
 
sorts the array in reverse-lexicographic (alphabetical) order.

The returned comparator is serializable.

Return
a comparator that imposes the reverse of the natural ordering on a collection of objects that implement the Comparable interface.
See Also
Returns a comparator that imposes the reverse ordering of the specified comparator. If the specified comparator is null, this method is equivalent to (in other words, it returns a comparator that imposes the reverse of the natural ordering on a collection of objects that implement the Comparable interface).

The returned comparator is serializable (assuming the specified comparator is also serializable or null).

Return
a comparator that imposes the reverse ordering of the specified comparator.
@since
1.5
Rotates the elements in the specified list by the specified distance. After calling this method, the element at index i will be the element previously at index (i - distance) mod list.size(), for all values of i between 0 and list.size()-1, inclusive. (This method has no effect on the size of the list.)

For example, suppose list comprises [t, a, n, k, s]. After invoking Collections.rotate(list, 1) (or Collections.rotate(list, -4)), list will comprise [s, t, a, n, k].

Note that this method can usefully be applied to sublists to move one or more elements within a list while preserving the order of the remaining elements. For example, the following idiom moves the element at index j forward to position k (which must be greater than or equal to j):

     Collections.rotate(list.subList(j, k+1), -1);
 
To make this concrete, suppose list comprises [a, b, c, d, e]. To move the element at index 1 (b) forward two positions, perform the following invocation:
     Collections.rotate(l.subList(1, 4), -1);
 
The resulting list is [a, c, d, b, e].

To move more than one element forward, increase the absolute value of the rotation distance. To move elements backward, use a positive shift distance.

If the specified list is small or implements the RandomAccess interface, this implementation exchanges the first element into the location it should go, and then repeatedly exchanges the displaced element into the location it should go until a displaced element is swapped into the first element. If necessary, the process is repeated on the second and successive elements, until the rotation is complete. If the specified list is large and doesn't implement the RandomAccess interface, this implementation breaks the list into two sublist views around index -distance mod size. Then the method is invoked on each sublist view, and finally it is invoked on the entire list. For a more complete description of both algorithms, see Section 2.3 of Jon Bentley's Programming Pearls (Addison-Wesley, 1986).

Parameters
listthe list to be rotated.
distancethe distance to rotate the list. There are no constraints on this value; it may be zero, negative, or greater than list.size().
Throws
UnsupportedOperationExceptionif the specified list or its list-iterator does not support the set method.
@since
1.4
Randomly permutes the specified list using a default source of randomness. All permutations occur with approximately equal likelihood.

The hedge "approximately" is used in the foregoing description because default source of randomness is only approximately an unbiased source of independently chosen bits. If it were a perfect source of randomly chosen bits, then the algorithm would choose permutations with perfect uniformity.

This implementation traverses the list backwards, from the last element up to the second, repeatedly swapping a randomly selected element into the "current position". Elements are randomly selected from the portion of the list that runs from the first element to the current position, inclusive.

This method runs in linear time. If the specified list does not implement the RandomAccess interface and is large, this implementation dumps the specified list into an array before shuffling it, and dumps the shuffled array back into the list. This avoids the quadratic behavior that would result from shuffling a "sequential access" list in place.

Parameters
listthe list to be shuffled.
Throws
UnsupportedOperationExceptionif the specified list or its list-iterator does not support the set method.
Randomly permute the specified list using the specified source of randomness. All permutations occur with equal likelihood assuming that the source of randomness is fair.

This implementation traverses the list backwards, from the last element up to the second, repeatedly swapping a randomly selected element into the "current position". Elements are randomly selected from the portion of the list that runs from the first element to the current position, inclusive.

This method runs in linear time. If the specified list does not implement the RandomAccess interface and is large, this implementation dumps the specified list into an array before shuffling it, and dumps the shuffled array back into the list. This avoids the quadratic behavior that would result from shuffling a "sequential access" list in place.

Parameters
listthe list to be shuffled.
rndthe source of randomness to use to shuffle the list.
Throws
UnsupportedOperationExceptionif the specified list or its list-iterator does not support the set operation.
Returns an immutable set containing only the specified object. The returned set is serializable.
Parameters
othe sole object to be stored in the returned set.
Return
an immutable set containing only the specified object.
Returns an immutable list containing only the specified object. The returned list is serializable.
Parameters
othe sole object to be stored in the returned list.
Return
an immutable list containing only the specified object.
@since
1.3
Returns an immutable map, mapping only the specified key to the specified value. The returned map is serializable.
Parameters
keythe sole key to be stored in the returned map.
valuethe value to which the returned map maps key.
Return
an immutable map containing only the specified key-value mapping.
@since
1.3
Sorts the specified list into ascending order, according to the natural ordering of its elements. All elements in the list must implement the Comparable interface. Furthermore, all elements in the list must be mutually comparable (that is, e1.compareTo(e2) must not throw a ClassCastException for any elements e1 and e2 in the list).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.

The specified list must be modifiable, but need not be resizable.

The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n log(n) performance. This implementation dumps the specified list into an array, sorts the array, and iterates over the list resetting each element from the corresponding position in the array. This avoids the n2 log(n) performance that would result from attempting to sort a linked list in place.

Parameters
listthe list to be sorted.
Throws
ClassCastExceptionif the list contains elements that are not mutually comparable (for example, strings and integers).
UnsupportedOperationExceptionif the specified list's list-iterator does not support the set operation.
See Also
Sorts the specified list according to the order induced by the specified comparator. All elements in the list must be mutually comparable using the specified comparator (that is, c.compare(e1, e2) must not throw a ClassCastException for any elements e1 and e2 in the list).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.

The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n log(n) performance. The specified list must be modifiable, but need not be resizable. This implementation dumps the specified list into an array, sorts the array, and iterates over the list resetting each element from the corresponding position in the array. This avoids the n2 log(n) performance that would result from attempting to sort a linked list in place.

Parameters
listthe list to be sorted.
cthe comparator to determine the order of the list. A null value indicates that the elements' natural ordering should be used.
Throws
ClassCastExceptionif the list contains elements that are not mutually comparable using the specified comparator.
UnsupportedOperationExceptionif the specified list's list-iterator does not support the set operation.
See Also
Swaps the elements at the specified positions in the specified list. (If the specified positions are equal, invoking this method leaves the list unchanged.)
Parameters
listThe list in which to swap elements.
ithe index of one element to be swapped.
jthe index of the other element to be swapped.
Throws
IndexOutOfBoundsExceptionif either i or j is out of range (i < 0 || i >= list.size() || j < 0 || j >= list.size()).
@since
1.4
Returns a synchronized (thread-safe) collection backed by the specified collection. In order to guarantee serial access, it is critical that all access to the backing collection is accomplished through the returned collection.

It is imperative that the user manually synchronize on the returned collection when iterating over it:

  Collection c = Collections.synchronizedCollection(myCollection);
     ...
  synchronized(c) {
      Iterator i = c.iterator(); // Must be in the synchronized block
      while (i.hasNext())
         foo(i.next());
  }
 
Failure to follow this advice may result in non-deterministic behavior.

The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.

The returned collection will be serializable if the specified collection is serializable.

Parameters
cthe collection to be "wrapped" in a synchronized collection.
Return
a synchronized view of the specified collection.
Returns a synchronized (thread-safe) list backed by the specified list. In order to guarantee serial access, it is critical that all access to the backing list is accomplished through the returned list.

It is imperative that the user manually synchronize on the returned list when iterating over it:

  List list = Collections.synchronizedList(new ArrayList());
      ...
  synchronized(list) {
      Iterator i = list.iterator(); // Must be in synchronized block
      while (i.hasNext())
          foo(i.next());
  }
 
Failure to follow this advice may result in non-deterministic behavior.

The returned list will be serializable if the specified list is serializable.

Parameters
listthe list to be "wrapped" in a synchronized list.
Return
a synchronized view of the specified list.
Returns a synchronized (thread-safe) map backed by the specified map. In order to guarantee serial access, it is critical that all access to the backing map is accomplished through the returned map.

It is imperative that the user manually synchronize on the returned map when iterating over any of its collection views:

  Map m = Collections.synchronizedMap(new HashMap());
      ...
  Set s = m.keySet();  // Needn't be in synchronized block
      ...
  synchronized(m) {  // Synchronizing on m, not s!
      Iterator i = s.iterator(); // Must be in synchronized block
      while (i.hasNext())
          foo(i.next());
  }
 
Failure to follow this advice may result in non-deterministic behavior.

The returned map will be serializable if the specified map is serializable.

Parameters
mthe map to be "wrapped" in a synchronized map.
Return
a synchronized view of the specified map.
Returns a synchronized (thread-safe) set backed by the specified set. In order to guarantee serial access, it is critical that all access to the backing set is accomplished through the returned set.

It is imperative that the user manually synchronize on the returned set when iterating over it:

  Set s = Collections.synchronizedSet(new HashSet());
      ...
  synchronized(s) {
      Iterator i = s.iterator(); // Must be in the synchronized block
      while (i.hasNext())
          foo(i.next());
  }
 
Failure to follow this advice may result in non-deterministic behavior.

The returned set will be serializable if the specified set is serializable.

Parameters
sthe set to be "wrapped" in a synchronized set.
Return
a synchronized view of the specified set.
Returns a synchronized (thread-safe) sorted map backed by the specified sorted map. In order to guarantee serial access, it is critical that all access to the backing sorted map is accomplished through the returned sorted map (or its views).

It is imperative that the user manually synchronize on the returned sorted map when iterating over any of its collection views, or the collections views of any of its subMap, headMap or tailMap views.

  SortedMap m = Collections.synchronizedSortedMap(new HashSortedMap());
      ...
  Set s = m.keySet();  // Needn't be in synchronized block
      ...
  synchronized(m) {  // Synchronizing on m, not s!
      Iterator i = s.iterator(); // Must be in synchronized block
      while (i.hasNext())
          foo(i.next());
  }
 
or:
  SortedMap m = Collections.synchronizedSortedMap(new HashSortedMap());
  SortedMap m2 = m.subMap(foo, bar);
      ...
  Set s2 = m2.keySet();  // Needn't be in synchronized block
      ...
  synchronized(m) {  // Synchronizing on m, not m2 or s2!
      Iterator i = s.iterator(); // Must be in synchronized block
      while (i.hasNext())
          foo(i.next());
  }
 
Failure to follow this advice may result in non-deterministic behavior.

The returned sorted map will be serializable if the specified sorted map is serializable.

Parameters
mthe sorted map to be "wrapped" in a synchronized sorted map.
Return
a synchronized view of the specified sorted map.
Returns a synchronized (thread-safe) sorted set backed by the specified sorted set. In order to guarantee serial access, it is critical that all access to the backing sorted set is accomplished through the returned sorted set (or its views).

It is imperative that the user manually synchronize on the returned sorted set when iterating over it or any of its subSet, headSet, or tailSet views.

  SortedSet s = Collections.synchronizedSortedSet(new HashSortedSet());
      ...
  synchronized(s) {
      Iterator i = s.iterator(); // Must be in the synchronized block
      while (i.hasNext())
          foo(i.next());
  }
 
or:
  SortedSet s = Collections.synchronizedSortedSet(new HashSortedSet());
  SortedSet s2 = s.headSet(foo);
      ...
  synchronized(s) {  // Note: s, not s2!!!
      Iterator i = s2.iterator(); // Must be in the synchronized block
      while (i.hasNext())
          foo(i.next());
  }
 
Failure to follow this advice may result in non-deterministic behavior.

The returned sorted set will be serializable if the specified sorted set is serializable.

Parameters
sthe sorted set to be "wrapped" in a synchronized sorted set.
Return
a synchronized view of the specified sorted set.
Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Returns an unmodifiable view of the specified collection. This method allows modules to provide users with "read-only" access to internal collections. Query operations on the returned collection "read through" to the specified collection, and attempts to modify the returned collection, whether direct or via its iterator, result in an UnsupportedOperationException.

The returned collection does not pass the hashCode and equals operations through to the backing collection, but relies on Object's equals and hashCode methods. This is necessary to preserve the contracts of these operations in the case that the backing collection is a set or a list.

The returned collection will be serializable if the specified collection is serializable.

Parameters
cthe collection for which an unmodifiable view is to be returned.
Return
an unmodifiable view of the specified collection.
Returns an unmodifiable view of the specified list. This method allows modules to provide users with "read-only" access to internal lists. Query operations on the returned list "read through" to the specified list, and attempts to modify the returned list, whether direct or via its iterator, result in an UnsupportedOperationException.

The returned list will be serializable if the specified list is serializable. Similarly, the returned list will implement RandomAccess if the specified list does.

Parameters
listthe list for which an unmodifiable view is to be returned.
Return
an unmodifiable view of the specified list.
Returns an unmodifiable view of the specified map. This method allows modules to provide users with "read-only" access to internal maps. Query operations on the returned map "read through" to the specified map, and attempts to modify the returned map, whether direct or via its collection views, result in an UnsupportedOperationException.

The returned map will be serializable if the specified map is serializable.

Parameters
mthe map for which an unmodifiable view is to be returned.
Return
an unmodifiable view of the specified map.
Returns an unmodifiable view of the specified set. This method allows modules to provide users with "read-only" access to internal sets. Query operations on the returned set "read through" to the specified set, and attempts to modify the returned set, whether direct or via its iterator, result in an UnsupportedOperationException.

The returned set will be serializable if the specified set is serializable.

Parameters
sthe set for which an unmodifiable view is to be returned.
Return
an unmodifiable view of the specified set.
Returns an unmodifiable view of the specified sorted map. This method allows modules to provide users with "read-only" access to internal sorted maps. Query operations on the returned sorted map "read through" to the specified sorted map. Attempts to modify the returned sorted map, whether direct, via its collection views, or via its subMap, headMap, or tailMap views, result in an UnsupportedOperationException.

The returned sorted map will be serializable if the specified sorted map is serializable.

Parameters
mthe sorted map for which an unmodifiable view is to be returned.
Return
an unmodifiable view of the specified sorted map.
Returns an unmodifiable view of the specified sorted set. This method allows modules to provide users with "read-only" access to internal sorted sets. Query operations on the returned sorted set "read through" to the specified sorted set. Attempts to modify the returned sorted set, whether direct, via its iterator, or via its subSet, headSet, or tailSet views, result in an UnsupportedOperationException.

The returned sorted set will be serializable if the specified sorted set is serializable.

Parameters
sthe sorted set for which an unmodifiable view is to be returned.
Return
an unmodifiable view of the specified sorted set.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.