The class Date represents a specific instant in time, with millisecond precision.

Prior to JDK 1.1, the class Date had two additional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second values. It also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was not amenable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between dates and time fields and the DateFormat class should be used to format and parse date strings. The corresponding methods in Date are deprecated.

Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so exactly, depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems assume that 1 day = 24 × 60 × 60 = 86400 seconds in all cases. In UTC, however, about once every year or two there is an extra second, called a "leap second." The leap second is always added as the last second of the day, and always on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, thanks to an added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second distinction.

Some computer standards are defined in terms of Greenwich mean time (GMT), which is equivalent to universal time (UT). GMT is the "civil" name for the standard; UT is the "scientific" name for the same standard. The distinction between UTC and UT is that UTC is based on an atomic clock and UT is based on astronomical observations, which for all practical purposes is an invisibly fine hair to split. Because the earth's rotation is not uniform (it slows down and speeds up in complicated ways), UT does not always flow uniformly. Leap seconds are introduced as needed into UTC so as to keep UTC within 0.9 seconds of UT1, which is a version of UT with certain corrections applied. There are other time and date systems as well; for example, the time scale used by the satellite-based global positioning system (GPS) is synchronized to UTC but is not adjusted for leap seconds. An interesting source of further information is the U.S. Naval Observatory, particularly the Directorate of Time at:

     http://tycho.usno.navy.mil
 

and their definitions of "Systems of Time" at:

     http://tycho.usno.navy.mil/systime.html
 

In all methods of class Date that accept or return year, month, date, hours, minutes, and seconds values, the following representations are used:

In all cases, arguments given to methods for these purposes need not fall within the indicated ranges; for example, a date may be specified as January 32 and is interpreted as meaning February 1.

@author
James Gosling
@author
Arthur van Hoff
@author
Alan Liu
@version
1.80, 05/18/04
@since
JDK1.0
Allocates a Date object and initializes it so that it represents the time at which it was allocated, measured to the nearest millisecond.
Allocates a Date object and initializes it to represent the specified number of milliseconds since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.
Parameters
datethe milliseconds since January 1, 1970, 00:00:00 GMT.
Allocates a Date object and initializes it so that it represents midnight, local time, at the beginning of the day specified by the year, month, and date arguments.
Parameters
yearthe year minus 1900.
monththe month between 0-11.
datethe day of the month between 1-31.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date) or GregorianCalendar(year + 1900, month, date).
Allocates a Date object and initializes it so that it represents the instant at the start of the minute specified by the year, month, date, hrs, and min arguments, in the local time zone.
Parameters
yearthe year minus 1900.
monththe month between 0-11.
datethe day of the month between 1-31.
hrsthe hours between 0-23.
minthe minutes between 0-59.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min) or GregorianCalendar(year + 1900, month, date, hrs, min).
Allocates a Date object and initializes it so that it represents the instant at the start of the second specified by the year, month, date, hrs, min, and sec arguments, in the local time zone.
Parameters
yearthe year minus 1900.
monththe month between 0-11.
datethe day of the month between 1-31.
hrsthe hours between 0-23.
minthe minutes between 0-59.
secthe seconds between 0-59.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min, sec) or GregorianCalendar(year + 1900, month, date, hrs, min, sec).
Allocates a Date object and initializes it so that it represents the date and time indicated by the string s, which is interpreted as if by the Date#parse method.
Parameters
sa string representation of the date.
@deprecated
As of JDK version 1.1, replaced by DateFormat.parse(String s).
Tests if this date is after the specified date.
Parameters
whena date.
Return
true if and only if the instant represented by this Date object is strictly later than the instant represented by when; false otherwise.
Throws
NullPointerExceptionif when is null.
Tests if this date is before the specified date.
Parameters
whena date.
Return
true if and only if the instant of time represented by this Date object is strictly earlier than the instant represented by when; false otherwise.
Throws
NullPointerExceptionif when is null.
Return a copy of this object.
Compares two Dates for ordering.
Parameters
anotherDatethe Date to be compared.
Return
the value 0 if the argument Date is equal to this Date; a value less than 0 if this Date is before the Date argument; and a value greater than 0 if this Date is after the Date argument.
Throws
NullPointerExceptionif anotherDate is null.
@since
1.2
Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.

In the foregoing description, the notation sgn(expression) designates the mathematical signum function, which is defined to return one of -1, 0, or 1 according to whether the value of expression is negative, zero or positive. The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y) must throw an exception iff y.compareTo(x) throws an exception.)

The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0.

Finally, the implementer must ensure that x.compareTo(y)==0 implies that sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

It is strongly recommended, but not strictly required that (x.compareTo(y)==0) == (x.equals(y)). Generally speaking, any class that implements the Comparable interface and violates this condition should clearly indicate this fact. The recommended language is "Note: this class has a natural ordering that is inconsistent with equals."

Parameters
othe Object to be compared.
Return
a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.
Throws
ClassCastExceptionif the specified object's type prevents it from being compared to this Object.
Compares two dates for equality. The result is true if and only if the argument is not null and is a Date object that represents the same point in time, to the millisecond, as this object.

Thus, two Date objects are equal if and only if the getTime method returns the same long value for both.

Parameters
objthe object to compare with.
Return
true if the objects are the same; false otherwise.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns the day of the month represented by this Date object. The value returned is between 1 and 31 representing the day of the month that contains or begins with the instant in time represented by this Date object, as interpreted in the local time zone.
Return
the day of the month represented by this date.
@deprecated
As of JDK version 1.1, replaced by Calendar.get(Calendar.DAY_OF_MONTH).
@deprecated
Returns the day of the week represented by this date. The returned value (0 = Sunday, 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6 = Saturday) represents the day of the week that contains or begins with the instant in time represented by this Date object, as interpreted in the local time zone.
Return
the day of the week represented by this date.
@deprecated
As of JDK version 1.1, replaced by Calendar.get(Calendar.DAY_OF_WEEK).
Returns the hour represented by this Date object. The returned value is a number (0 through 23) representing the hour within the day that contains or begins with the instant in time represented by this Date object, as interpreted in the local time zone.
Return
the hour represented by this date.
@deprecated
As of JDK version 1.1, replaced by Calendar.get(Calendar.HOUR_OF_DAY).
Returns the number of minutes past the hour represented by this date, as interpreted in the local time zone. The value returned is between 0 and 59.
Return
the number of minutes past the hour represented by this date.
@deprecated
As of JDK version 1.1, replaced by Calendar.get(Calendar.MINUTE).
Returns a number representing the month that contains or begins with the instant in time represented by this Date object. The value returned is between 0 and 11, with the value 0 representing January.
Return
the month represented by this date.
@deprecated
As of JDK version 1.1, replaced by Calendar.get(Calendar.MONTH).
Returns the number of seconds past the minute represented by this date. The value returned is between 0 and 61. The values 60 and 61 can only occur on those Java Virtual Machines that take leap seconds into account.
Return
the number of seconds past the minute represented by this date.
@deprecated
As of JDK version 1.1, replaced by Calendar.get(Calendar.SECOND).
Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this Date object.
Return
the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this date.
Returns the offset, measured in minutes, for the local time zone relative to UTC that is appropriate for the time represented by this Date object.

For example, in Massachusetts, five time zones west of Greenwich:

 new Date(96, 1, 14).getTimezoneOffset() returns 300
because on February 14, 1996, standard time (Eastern Standard Time) is in use, which is offset five hours from UTC; but:
 new Date(96, 5, 1).getTimezoneOffset() returns 240
because on June 1, 1996, daylight saving time (Eastern Daylight Time) is in use, which is offset only four hours from UTC.

This method produces the same result as if it computed:

 (this.getTime() - UTC(this.getYear(), 
                       this.getMonth(), 
                       this.getDate(),
                       this.getHours(), 
                       this.getMinutes(), 
                       this.getSeconds())) / (60 * 1000)
 
Return
the time-zone offset, in minutes, for the current time zone.
@deprecated
As of JDK version 1.1, replaced by -(Calendar.get(Calendar.ZONE_OFFSET) + Calendar.get(Calendar.DST_OFFSET)) / (60 * 1000).
Returns a value that is the result of subtracting 1900 from the year that contains or begins with the instant in time represented by this Date object, as interpreted in the local time zone.
Return
the year represented by this date, minus 1900.
@deprecated
As of JDK version 1.1, replaced by Calendar.get(Calendar.YEAR) - 1900.
Returns a hash code value for this object. The result is the exclusive OR of the two halves of the primitive long value returned by the Date#getTime method. That is, the hash code is the value of the expression:
 (int)(this.getTime()^(this.getTime() >>> 32))
Return
a hash code value for this object.
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Attempts to interpret the string s as a representation of a date and time. If the attempt is successful, the time indicated is returned represented as the distance, measured in milliseconds, of that time from the epoch (00:00:00 GMT on January 1, 1970). If the attempt fails, an IllegalArgumentException is thrown.

It accepts many syntaxes; in particular, it recognizes the IETF standard date syntax: "Sat, 12 Aug 1995 13:30:00 GMT". It also understands the continental U.S. time-zone abbreviations, but for general use, a time-zone offset should be used: "Sat, 12 Aug 1995 13:30:00 GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If no time zone is specified, the local time zone is assumed. GMT and UTC are considered equivalent.

The string s is processed from left to right, looking for data of interest. Any material in s that is within the ASCII parenthesis characters ( and ) is ignored. Parentheses may be nested. Otherwise, the only characters permitted within s are these ASCII characters:

 abcdefghijklmnopqrstuvwxyz
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 0123456789,+-:/
and whitespace characters.

A consecutive sequence of decimal digits is treated as a decimal number:

  • If a number is preceded by + or - and a year has already been recognized, then the number is a time-zone offset. If the number is less than 24, it is an offset measured in hours. Otherwise, it is regarded as an offset in minutes, expressed in 24-hour time format without punctuation. A preceding - means a westward offset. Time zone offsets are always relative to UTC (Greenwich). Thus, for example, -5 occurring in the string would mean "five hours west of Greenwich" and +0430 would mean "four hours and thirty minutes east of Greenwich." It is permitted for the string to specify GMT, UT, or UTC redundantly-for example, GMT-5 or utc+0430.
  • The number is regarded as a year number if one of the following conditions is true:
    • The number is equal to or greater than 70 and followed by a space, comma, slash, or end of string
    • The number is less than 70, and both a month and a day of the month have already been recognized
    If the recognized year number is less than 100, it is interpreted as an abbreviated year relative to a century of which dates are within 80 years before and 19 years after the time when the Date class is initialized. After adjusting the year number, 1900 is subtracted from it. For example, if the current year is 1999 then years in the range 19 to 99 are assumed to mean 1919 to 1999, while years from 0 to 18 are assumed to mean 2000 to 2018. Note that this is slightly different from the interpretation of years less than 100 that is used in java.text.SimpleDateFormat .
  • If the number is followed by a colon, it is regarded as an hour, unless an hour has already been recognized, in which case it is regarded as a minute.
  • If the number is followed by a slash, it is regarded as a month (it is decreased by 1 to produce a number in the range 0 to 11), unless a month has already been recognized, in which case it is regarded as a day of the month.
  • If the number is followed by whitespace, a comma, a hyphen, or end of string, then if an hour has been recognized but not a minute, it is regarded as a minute; otherwise, if a minute has been recognized but not a second, it is regarded as a second; otherwise, it is regarded as a day of the month.

A consecutive sequence of letters is regarded as a word and treated as follows:

  • A word that matches AM, ignoring case, is ignored (but the parse fails if an hour has not been recognized or is less than 1 or greater than 12).
  • A word that matches PM, ignoring case, adds 12 to the hour (but the parse fails if an hour has not been recognized or is less than 1 or greater than 12).
  • Any word that matches any prefix of SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, or SATURDAY, ignoring case, is ignored. For example, sat, Friday, TUE, and Thurs are ignored.
  • Otherwise, any word that matches any prefix of JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, or DECEMBER, ignoring case, and considering them in the order given here, is recognized as specifying a month and is converted to a number (0 to 11). For example, aug, Sept, april, and NOV are recognized as months. So is Ma, which is recognized as MARCH, not MAY.
  • Any word that matches GMT, UT, or UTC, ignoring case, is treated as referring to UTC.
  • Any word that matches EST, CST, MST, or PST, ignoring case, is recognized as referring to the time zone in North America that is five, six, seven, or eight hours west of Greenwich, respectively. Any word that matches EDT, CDT, MDT, or PDT, ignoring case, is recognized as referring to the same time zone, respectively, during daylight saving time.

Once the entire string s has been scanned, it is converted to a time result in one of two ways. If a time zone or time-zone offset has been recognized, then the year, month, day of month, hour, minute, and second are interpreted in UTC and then the time-zone offset is applied. Otherwise, the year, month, day of month, hour, minute, and second are interpreted in the local time zone.

Parameters
sa string to be parsed as a date.
Return
the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by the string argument.
@deprecated
As of JDK version 1.1, replaced by DateFormat.parse(String s).
Sets the day of the month of this Date object to the specified value. This Date object is modified so that it represents a point in time within the specified day of the month, with the year, month, hour, minute, and second the same as before, as interpreted in the local time zone. If the date was April 30, for example, and the date is set to 31, then it will be treated as if it were on May 1, because April has only 30 days.
Parameters
datethe day of the month value between 1-31.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(Calendar.DAY_OF_MONTH, int date).
Sets the hour of this Date object to the specified value. This Date object is modified so that it represents a point in time within the specified hour of the day, with the year, month, date, minute, and second the same as before, as interpreted in the local time zone.
Parameters
hoursthe hour value.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(Calendar.HOUR_OF_DAY, int hours).
Sets the minutes of this Date object to the specified value. This Date object is modified so that it represents a point in time within the specified minute of the hour, with the year, month, date, hour, and second the same as before, as interpreted in the local time zone.
Parameters
minutesthe value of the minutes.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(Calendar.MINUTE, int minutes).
Sets the month of this date to the specified value. This Date object is modified so that it represents a point in time within the specified month, with the year, date, hour, minute, and second the same as before, as interpreted in the local time zone. If the date was October 31, for example, and the month is set to June, then the new date will be treated as if it were on July 1, because June has only 30 days.
Parameters
monththe month value between 0-11.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(Calendar.MONTH, int month).
Sets the seconds of this Date to the specified value. This Date object is modified so that it represents a point in time within the specified second of the minute, with the year, month, date, hour, and minute the same as before, as interpreted in the local time zone.
Parameters
secondsthe seconds value.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(Calendar.SECOND, int seconds).
Sets this Date object to represent a point in time that is time milliseconds after January 1, 1970 00:00:00 GMT.
Parameters
timethe number of milliseconds.
Sets the year of this Date object to be the specified value plus 1900. This Date object is modified so that it represents a point in time within the specified year, with the month, date, hour, minute, and second the same as before, as interpreted in the local time zone. (Of course, if the date was February 29, for example, and the year is set to a non-leap year, then the new date will be treated as if it were on March 1.)
Parameters
yearthe year value.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(Calendar.YEAR, year + 1900).
Creates a string representation of this Date object of the form: d mon yyyy hh:mm:ss GMT where:
  • d is the day of the month (1 through 31), as one or two decimal digits.
  • mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec).
  • yyyy is the year, as four decimal digits.
  • hh is the hour of the day (00 through 23), as two decimal digits.
  • mm is the minute within the hour (00 through 59), as two decimal digits.
  • ss is the second within the minute (00 through 61), as two decimal digits.
  • GMT is exactly the ASCII letters "GMT" to indicate Greenwich Mean Time.

The result does not depend on the local time zone.

Return
a string representation of this date, using the Internet GMT conventions.
@deprecated
As of JDK version 1.1, replaced by DateFormat.format(Date date), using a GMT TimeZone.
Creates a string representation of this Date object in an implementation-dependent form. The intent is that the form should be familiar to the user of the Java application, wherever it may happen to be running. The intent is comparable to that of the "%c" format supported by the strftime() function of ISO C.
Return
a string representation of this date, using the locale conventions.
@deprecated
As of JDK version 1.1, replaced by DateFormat.format(Date date).
Converts this Date object to a String of the form:
 dow mon dd hh:mm:ss zzz yyyy
where:
  • dow is the day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat).
  • mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec).
  • dd is the day of the month (01 through 31), as two decimal digits.
  • hh is the hour of the day (00 through 23), as two decimal digits.
  • mm is the minute within the hour (00 through 59), as two decimal digits.
  • ss is the second within the minute (00 through 61, as two decimal digits.
  • zzz is the time zone (and may reflect daylight saving time). Standard time zone abbreviations include those recognized by the method parse. If time zone information is not available, then zzz is empty - that is, it consists of no characters at all.
  • yyyy is the year, as four decimal digits.
Return
a string representation of this date.
Determines the date and time based on the arguments. The arguments are interpreted as a year, month, day of the month, hour of the day, minute within the hour, and second within the minute, exactly as for the Date constructor with six arguments, except that the arguments are interpreted relative to UTC rather than to the local time zone. The time indicated is returned represented as the distance, measured in milliseconds, of that time from the epoch (00:00:00 GMT on January 1, 1970).
Parameters
yearthe year minus 1900.
monththe month between 0-11.
datethe day of the month between 1-31.
hrsthe hours between 0-23.
minthe minutes between 0-59.
secthe seconds between 0-59.
Return
the number of milliseconds since January 1, 1970, 00:00:00 GMT for the date and time specified by the arguments.
@deprecated
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min, sec) or GregorianCalendar(year + 1900, month, date, hrs, min, sec), using a UTC TimeZone, followed by Calendar.getTime().getTime().
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.