This implementation provides guaranteed log(n) time cost for the containsKey, get, put and remove operations. Algorithms are adaptations of those in Cormen, Leiserson, and Rivest's Introduction to Algorithms.
Note that the ordering maintained by a sorted map (whether or not an explicit comparator is provided) must be consistent with equals if this sorted map is to correctly implement the Map interface. (See Comparable or Comparator for a precise definition of consistent with equals.) This is so because the Map interface is defined in terms of the equals operation, but a map performs all key comparisons using its compareTo (or compare) method, so two keys that are deemed equal by this method are, from the standpoint of the sorted map, equal. The behavior of a sorted map is well-defined even if its ordering is inconsistent with equals; it just fails to obey the general contract of the Map interface.
Note that this implementation is not synchronized. If multiple threads access a map concurrently, and at least one of the threads modifies the map structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more mappings; merely changing the value associated with an existing key is not a structural modification.) This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be "wrapped" using the Collections.synchronizedMap method. This is best done at creation time, to prevent accidental unsynchronized access to the map:
Map m = Collections.synchronizedMap(new TreeMap(...));
The iterators returned by all of this class's "collection view methods" are fail-fast: if the map is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove or add methods, the iterator throws a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.
This class is a member of the Java Collections Framework.
This implementation first checks if the specified object is this map; if so it returns true. Then, it checks if the specified object is a map whose size is identical to the size of this set; if not, it returns false. If so, it iterates over this map's entrySet collection, and checks that the specified map contains each mapping that this map contains. If the specified map fails to contain such a mapping, false is returned. If the iteration completes, true is returned.
This implementation iterates over entrySet(), calling hashCode on each element (entry) in the Collection, and adding up the results.
The map returned by this method will throw an IllegalArgumentException if the user attempts to insert a key outside the specified range.
Note: this method always returns a view that does not contain its (high) endpoint. If you need a view that does contain this endpoint, and the key type allows for calculation of the successor a given key, merely request a headMap bounded by successor(highEndpoint). For example, suppose that suppose that m is a map whose keys are strings. The following idiom obtains a view containing all of the key-value mappings in m whose keys are less than or equal to high:
Map head = m.headMap(high+"\0");
This implementation returns size() == 0.
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
The map returned by this method will throw an IllegalArgumentException if the user attempts to insert a key outside the specified range.
Note: this method always returns a half-open range (which includes its low endpoint but not its high endpoint). If you need a closed range (which includes both endpoints), and the key type allows for calculation of the successor a given key, merely request the subrange from lowEndpoint to successor(highEndpoint). For example, suppose that m is a map whose keys are strings. The following idiom obtains a view containing all of the key-value mappings in m whose keys are between low and high, inclusive:
Map sub = m.subMap(low, high+"\0");A similarly technique can be used to generate an open range (which contains neither endpoint). The following idiom obtains a view containing all of the key-value mappings in m whose keys are between low and high, exclusive:
Map sub = m.subMap(low+"\0", high);
The map returned by this method will throw an IllegalArgumentException if the user attempts to insert a key outside the specified range.
Note: this method always returns a view that contains its (low) endpoint. If you need a view that does not contain this endpoint, and the element type allows for calculation of the successor a given value, merely request a tailMap bounded by successor(lowEndpoint). For example, suppose that suppose that m is a map whose keys are strings. The following idiom obtains a view containing all of the key-value mappings in m whose keys are strictly greater than low:
Map tail = m.tailMap(low+"\0");
This implementation creates an empty string buffer, appends a left brace, and iterates over the map's entrySet view, appending the string representation of each map.entry in turn. After appending each entry except the last, the string ", " is appended. Finally a right brace is appended. A string is obtained from the stringbuffer, and returned.
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.