A TimeUnit represents time durations at a given unit of granularity and provides utility methods to convert across units, and to perform timing and delay operations in these units. A TimeUnit does not maintain time information, but only helps organize and use time representations that may be maintained separately across various contexts.

A TimeUnit is mainly used to inform time-based methods how a given timing parameter should be interpreted. For example, the following code will timeout in 50 milliseconds if the lock is not available:

  Lock lock = ...;
  if ( lock.tryLock(50L, TimeUnit.MILLISECONDS) ) ...
 
while this code will timeout in 50 seconds:
  Lock lock = ...;
  if ( lock.tryLock(50L, TimeUnit.SECONDS) ) ...
 
Note however, that there is no guarantee that a particular timeout implementation will be able to notice the passage of time at the same granularity as the given TimeUnit.
@since
1.5
@author
Doug Lea
Compares this enum with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object. Enum constants are only comparable to other enum constants of the same enum type. The natural order implemented by this method is the order in which the constants are declared.
Convert the given time duration in the given unit to this unit. Conversions from finer to coarser granularities truncate, so lose precision. For example converting 999 milliseconds to seconds results in 0. Conversions from coarser to finer granularities with arguments that would numerically overflow saturate to Long.MIN_VALUE if negative or Long.MAX_VALUE if positive.
Parameters
durationthe time duration in the given unit
unitthe unit of the duration argument
Return
the converted duration in this unit, or Long.MIN_VALUE if conversion would negatively overflow, or Long.MAX_VALUE if it would positively overflow.
Returns true if the specified object is equal to this enum constant.
Parameters
otherthe object to be compared for equality with this object.
Return
true if the specified object is equal to this enum constant.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns the Class object corresponding to this enum constant's enum type. Two enum constants e1 and e2 are of the same enum type if and only if e1.getDeclaringClass() == e2.getDeclaringClass(). (The value returned by this method may differ from the one returned by the Object#getClass method for enum constants with constant-specific class bodies.)
Return
the Class object corresponding to this enum constant's enum type
Returns a hash code for this enum constant.
Return
a hash code for this enum constant.
Returns the name of this enum constant, exactly as declared in its enum declaration. Most programmers should use the #toString method in preference to this one, as the toString method may return a more user-friendly name. This method is designed primarily for use in specialized situations where correctness depends on getting the exact name, which will not vary from release to release.
Return
the name of this enum constant
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Returns the ordinal of this enumeration constant (its position in its enum declaration, where the initial constant is assigned an ordinal of zero). Most programmers will have no use for this method. It is designed for use by sophisticated enum-based data structures, such as java.util.EnumSet and java.util.EnumMap .
Return
the ordinal of this enumeration constant
Perform a Thread.sleep using this unit. This is a convenience method that converts time arguments into the form required by the Thread.sleep method.
Parameters
timeoutthe minimum time to sleep
Throws
InterruptedExceptionif interrupted while sleeping.
See Also
Perform a timed Thread.join using this time unit. This is a convenience method that converts time arguments into the form required by the Thread.join method.
Parameters
threadthe thread to wait for
timeoutthe maximum time to wait
Throws
InterruptedExceptionif interrupted while waiting.
Perform a timed Object.wait using this time unit. This is a convenience method that converts timeout arguments into the form required by the Object.wait method.

For example, you could implement a blocking poll method (see BlockingQueue.poll ) using:

  public synchronized  Object poll(long timeout, TimeUnit unit) throws InterruptedException {
    while (empty) {
      unit.timedWait(this, timeout);
      ...
    }
  }
Parameters
objthe object to wait on
timeoutthe maximum time to wait.
Throws
InterruptedExceptionif interrupted while waiting.
Equivalent to MICROSECONDS.convert(duration, this).
Parameters
durationthe duration
Return
the converted duration, or Long.MIN_VALUE if conversion would negatively overflow, or Long.MAX_VALUE if it would positively overflow.
See Also
Equivalent to MILLISECONDS.convert(duration, this).
Parameters
durationthe duration
Return
the converted duration, or Long.MIN_VALUE if conversion would negatively overflow, or Long.MAX_VALUE if it would positively overflow.
See Also
Equivalent to NANOSECONDS.convert(duration, this).
Parameters
durationthe duration
Return
the converted duration, or Long.MIN_VALUE if conversion would negatively overflow, or Long.MAX_VALUE if it would positively overflow.
See Also
Equivalent to SECONDS.convert(duration, this).
Parameters
durationthe duration
Return
the converted duration.
See Also
Returns the name of this enum constant, as contained in the declaration. This method may be overridden, though it typically isn't necessary or desirable. An enum type should override this method when a more "programmer-friendly" string form exists.
Return
the name of this enum constant
Returns the enum constant of the specified enum type with the specified name. The name must match exactly an identifier used to declare an enum constant in this type. (Extraneous whitespace characters are not permitted.)
Parameters
enumTypethe Class object of the enum type from which to return a constant
namethe name of the constant to return
Return
the enum constant of the specified enum type with the specified name
Throws
IllegalArgumentExceptionif the specified enum type has no constant with the specified name, or the specified class object does not represent an enum type
NullPointerExceptionif enumType or name is null
@since
1.5
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.