An implementation of the document interface to serve as a basis for implementing various kinds of documents. At this level there is very little policy, so there is a corresponding increase in difficulty of use.

This class implements a locking mechanism for the document. It allows multiple readers or one writer, and writers must wait until all observers of the document have been notified of a previous change before beginning another mutation to the document. The read lock is acquired and released using the render method. A write lock is aquired by the methods that mutate the document, and are held for the duration of the method call. Notification is done on the thread that produced the mutation, and the thread has full read access to the document for the duration of the notification, but other readers are kept out until the notification has finished. The notification is a beans event notification which does not allow any further mutations until all listeners have been notified.

Any models subclassed from this class and used in conjunction with a text component that has a look and feel implementation that is derived from BasicTextUI may be safely updated asynchronously, because all access to the View hierarchy is serialized by BasicTextUI if the document is of type AbstractDocument. The locking assumes that an independant thread will access the View hierarchy only from the DocumentListener methods, and that there will be only one event thread active at a time.

If concurrency support is desired, there are the following additional implications. The code path for any DocumentListener implementation and any UndoListener implementation must be threadsafe, and not access the component lock if trying to be safe from deadlocks. The repaint and revalidate methods on JComponent are safe.

AbstractDocument models an implied break at the end of the document. Among other things this allows you to position the caret after the last character. As a result of this, getLength returns one less than the length of the Content. If you create your own Content, be sure and initialize it to have an additional character. Refer to StringContent and GapContent for examples of this. Another implication of this is that Elements that model the implied end character will have an endOffset == (getLength() + 1). For example, in DefaultStyledDocument getParagraphElement(getLength()).getEndOffset() == getLength() + 1 .

Warning: Serialized objects of this class will not be compatible with future Swing releases. The current serialization support is appropriate for short term storage or RMI between applications running the same version of Swing. As of 1.4, support for long term storage of all JavaBeansTM has been added to the java.beans package. Please see java.beans.XMLEncoder .

@author
Timothy Prinzing
@version
1.151 07/13/04
Name of elements used to hold a unidirectional run
Name of elements used to represent content
Name of the attribute used to specify element names.
Name of elements used to represent paragraphs
Name of elements used to hold sections (lines/paragraphs).
The property name for the description of the stream used to initialize the document. This should be used if the document was initialized from a stream and anything is known about the stream.
The property name for the title of the document, if there is one.
Registers the given observer to begin receiving notifications when changes are made to the document.
Parameters
listenerthe observer to register
Registers the given observer to begin receiving notifications when undoable edits are made to the document.
Parameters
listenerthe observer to register
This method allows an application to mark a place in a sequence of character content. This mark can then be used to tracks change as insertions and removals are made in the content. The policy is that insertions always occur prior to the current position (the most common case) unless the insertion location is zero, in which case the insertion is forced to a position that follows the original position.
Parameters
offsthe offset from the start of the document >= 0
Return
the position
Throws
BadLocationExceptionif the given position does not represent a valid location in the associated document
Gives a diagnostic dump.
Parameters
outthe output stream
Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value x, x.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objthe reference object with which to compare.
Return
true if this object is the same as the obj argument; false otherwise.
Gets the asynchronous loading priority. If less than zero, the document should not be loaded asynchronously.
Return
the asynchronous loading priority, or -1 if the document should not be loaded asynchronously
Returns the root element of the bidirectional structure for this document. Its children represent character runs with a given Unicode bidi level.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Returns the root element that views should be based upon, unless some other mechanism for assigning views to element structures is provided.
Return
the root element
Returns the DocumentFilter that is responsible for filtering of insertion/removal. A null return value implies no filtering is to occur.
Return
the DocumentFilter
@since
1.4
Returns an array of all the document listeners registered on this document.
Return
all of this document's DocumentListeners or an empty array if no document listeners are currently registered
@since
1.4
Supports managing a set of properties. Callers can use the documentProperties dictionary to annotate the document with document-wide properties.
Return
a non-null Dictionary
Returns a position that represents the end of the document. The position returned can be counted on to track change and stay located at the end of the document.
Return
the position
Returns number of characters of content currently in the document.
Return
number of characters >= 0
Returns an array of all the objects currently registered as FooListeners upon this document. FooListeners are registered using the addFooListener method.

You can specify the listenerType argument with a class literal, such as FooListener.class. For example, you can query a document d for its document listeners with the following code:

DocumentListener[] mls = (DocumentListener[])(d.getListeners(DocumentListener.class));
If no such listeners exist, this method returns an empty array.
Parameters
listenerTypethe type of listeners requested; this parameter should specify an interface that descends from java.util.EventListener
Return
an array of all objects registered as FooListeners on this component, or an empty array if no such listeners have been added
Throws
ClassCastExceptionif listenerType doesn't specify a class or interface that implements java.util.EventListener
@since
1.3
Get the paragraph element containing the given position. Sub-classes must define for themselves what exactly constitutes a paragraph. They should keep in mind however that a paragraph should at least be the unit of text over which to run the Unicode bidirectional algorithm.
Parameters
posthe starting offset >= 0
Return
the element
Gets the properties associated with the document.
Parameters
keya non-null property key
Return
the properties
Returns all of the root elements that are defined.

Typically there will be only one document structure, but the interface supports building an arbitrary number of structural projections over the text data. The document can have multiple root elements to support multiple document structures. Some examples might be:

  • Text direction.
  • Lexical token streams.
  • Parse trees.
  • Conversions to formats other than the native format.
  • Modification specifications.
  • Annotations.
Return
the root element
Returns a position that represents the start of the document. The position returned can be counted on to track change and stay located at the beginning of the document.
Return
the position
Fetches the text contained within the given portion of the document.
Parameters
offsetthe offset into the document representing the desired start of the text >= 0
lengththe length of the desired string >= 0
Return
the text, in a String of length >= 0
Throws
BadLocationExceptionsome portion of the given range was not a valid part of the document. The location in the exception is the first bad position encountered.
Fetches the text contained within the given portion of the document.

If the partialReturn property on the txt parameter is false, the data returned in the Segment will be the entire length requested and may or may not be a copy depending upon how the data was stored. If the partialReturn property is true, only the amount of text that can be returned without creating a copy is returned. Using partial returns will give better performance for situations where large parts of the document are being scanned. The following is an example of using the partial return to access the entire document:



   int nleft = doc.getDocumentLength();
   Segment text = new Segment();
   int offs = 0;
   text.setPartialReturn(true);   
   while (nleft > 0) {
       doc.getText(offs, nleft, text);
       // do someting with text
       nleft -= text.count;
       offs += text.count;
   }

 
Parameters
offsetthe offset into the document representing the desired start of the text >= 0
lengththe length of the desired string >= 0
txtthe Segment object to return the text in
Throws
BadLocationExceptionSome portion of the given range was not a valid part of the document. The location in the exception is the first bad position encountered.
Returns an array of all the undoable edit listeners registered on this document.
Return
all of this document's UndoableEditListeners or an empty array if no undoable edit listeners are currently registered
@since
1.4
Returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

Return
a hash code value for this object.
Inserts a string of content. This will cause a DocumentEvent of type DocumentEvent.EventType.INSERT to be sent to the registered DocumentListers, unless an exception is thrown. The DocumentEvent will be delivered by calling the insertUpdate method on the DocumentListener. The offset and length of the generated DocumentEvent will indicate what change was actually made to the Document.

Diagram shows insertion of 'quick' in 'The quick brown fox'

If the Document structure changed as result of the insertion, the details of what Elements were inserted and removed in response to the change will also be contained in the generated DocumentEvent. It is up to the implementation of a Document to decide how the structure should change in response to an insertion.

If the Document supports undo/redo, an UndoableEditEvent will also be generated.

Parameters
offsetthe offset into the document to insert the content >= 0. All positions that track change at or after the given location will move.
strthe string to insert
athe attributes to associate with the inserted content. This may be null if there are no attributes.
Throws
BadLocationExceptionthe given insert position is not a valid position within the document
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Associates a property with the document. Two standard property keys provided are: StreamDescriptionProperty and TitleProperty. Other properties, such as author, may also be defined.
Parameters
keythe non-null property key
valuethe property value
Acquires a lock to begin reading some state from the document. There can be multiple readers at the same time. Writing blocks the readers until notification of the change to the listeners has been completed. This method should be used very carefully to avoid unintended compromise of the document. It should always be balanced with a readUnlock.
See Also
Does a read unlock. This signals that one of the readers is done. If there are no more readers then writing can begin again. This should be balanced with a readLock, and should occur in a finally statement so that the balance is guaranteed. The following is an example.

     readLock();
     try {
         // do something
     } finally {
         readUnlock();
     }
 
See Also
Removes a portion of the content of the document. This will cause a DocumentEvent of type DocumentEvent.EventType.REMOVE to be sent to the registered DocumentListeners, unless an exception is thrown. The notification will be sent to the listeners by calling the removeUpdate method on the DocumentListeners.

To ensure reasonable behavior in the face of concurrency, the event is dispatched after the mutation has occurred. This means that by the time a notification of removal is dispatched, the document has already been updated and any marks created by createPosition have already changed. For a removal, the end of the removal range is collapsed down to the start of the range, and any marks in the removal range are collapsed down to the start of the range.

Diagram shows removal of 'quick' from 'The quick brown fox.'

If the Document structure changed as result of the removal, the details of what Elements were inserted and removed in response to the change will also be contained in the generated DocumentEvent. It is up to the implementation of a Document to decide how the structure should change in response to a remove.

If the Document supports undo/redo, an UndoableEditEvent will also be generated.

Parameters
offsthe offset from the beginning >= 0
lenthe number of characters to remove >= 0
Throws
BadLocationExceptionsome portion of the removal range was not a valid part of the document. The location in the exception is the first bad position encountered.
Unregisters the given observer from the notification list so it will no longer receive change updates.
Parameters
listenerthe observer to register
Unregisters the given observer from the notification list so it will no longer receive updates.
Parameters
listenerthe observer to register
Allows the model to be safely rendered in the presence of concurrency, if the model supports being updated asynchronously. The given runnable will be executed in a way that allows it to safely read the model with no changes while the runnable is being executed. The runnable itself may not make any mutations.
Parameters
ra Runnable used to render the model
Deletes the region of text from offset to offset + length, and replaces it with text. It is up to the implementation as to how this is implemented, some implementations may treat this as two distinct operations: a remove followed by an insert, others may treat the replace as one atomic operation.
Parameters
offsetindex of child element
lengthlength of text to delete, may be 0 indicating don't delete anything
texttext to insert, null indicates no text to insert
attrsAttributeSet indicating attributes of inserted text, null is legal, and typically treated as an empty attributeset, but exact interpretation is left to the subclass
Throws
BadLocationExceptionthe given position is not a valid position within the document
@since
1.4
Sets the asynchronous loading priority.
Parameters
pthe new asynchronous loading priority; a value less than zero indicates that the document should not be loaded asynchronously
Sets the DocumentFilter. The DocumentFilter is passed insert and remove to conditionally allow inserting/deleting of the text. A null value indicates that no filtering will occur.
Parameters
filterthe DocumentFilter used to constrain text
@since
1.4
Replaces the document properties dictionary for this document.
Parameters
xthe new dictionary
Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.