This implementation provides guaranteed log(n) time cost for the basic operations (add, remove and contains).
Note that the ordering maintained by a set (whether or not an explicit comparator is provided) must be consistent with equals if it is to correctly implement the Set interface. (See Comparable or Comparator for a precise definition of consistent with equals.) This is so because the Set interface is defined in terms of the equals operation, but a TreeSet instance performs all key comparisons using its compareTo (or compare) method, so two keys that are deemed equal by this method are, from the standpoint of the set, equal. The behavior of a set is well-defined even if its ordering is inconsistent with equals; it just fails to obey the general contract of the Set interface.
Note that this implementation is not synchronized. If multiple threads access a set concurrently, and at least one of the threads modifies the set, it must be synchronized externally. This is typically accomplished by synchronizing on some object that naturally encapsulates the set. If no such object exists, the set should be "wrapped" using the Collections.synchronizedSet method. This is best done at creation time, to prevent accidental unsynchronized access to the set:
SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));
The Iterators returned by this class's iterator method are fail-fast: if the set is modified at any time after the iterator is created, in any way except through the iterator's own remove method, the iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.
This class is a member of the Java Collections Framework.
This implementation iterates over the specified collection, checking each element returned by the iterator in turn to see if it's contained in this collection. If all elements are so contained true is returned, otherwise false.
This implementation first checks if the specified object is this set; if so it returns true. Then, it checks if the specified object is a set whose size is identical to the size of this set; if not, it returns false. If so, it returns containsAll((Collection) o).
This implementation enumerates over the set, calling the hashCode method on each element in the collection, and adding up the results.
The sorted set returned by this method will throw an IllegalArgumentException if the user attempts to insert a element outside the specified range.
Note: this method always returns a view that does not contain its (high) endpoint. If you need a view that does contain this endpoint, and the element type allows for calculation of the successor a given value, merely request a headSet bounded by successor(highEndpoint). For example, suppose that s is a sorted set of strings. The following idiom obtains a view containing all of the strings in s that are less than or equal to high:
SortedSet head = s.headSet(high+"\0");
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This implementation determines which is the smaller of this set and the specified collection, by invoking the size method on each. If this set has fewer elements, then the implementation iterates over this set, checking each element returned by the iterator in turn to see if it is contained in the specified collection. If it is so contained, it is removed from this set with the iterator's remove method. If the specified collection has fewer elements, then the implementation iterates over the specified collection, removing from this set each element returned by the iterator, using this set's remove method.
Note that this implementation will throw an UnsupportedOperationException if the iterator returned by the iterator method does not implement the remove method.
This implementation iterates over this collection, checking each element returned by the iterator in turn to see if it's contained in the specified collection. If it's not so contained, it's removed from this collection with the iterator's remove method.
Note that this implementation will throw an UnsupportedOperationException if the iterator returned by the iterator method does not implement the remove method and this collection contains one or more elements not present in the specified collection.
The sorted set returned by this method will throw an IllegalArgumentException if the user attempts to insert a element outside the specified range.
Note: this method always returns a half-open range (which includes its low endpoint but not its high endpoint). If you need a closed range (which includes both endpoints), and the element type allows for calculation of the successor a given value, merely request the subrange from lowEndpoint to successor(highEndpoint). For example, suppose that s is a sorted set of strings. The following idiom obtains a view containing all of the strings in s from low to high, inclusive:
SortedSet sub = s.subSet(low, high+"\0");A similar technique can be used to generate an open range (which contains neither endpoint). The following idiom obtains a view containing all of the Strings in s from low to high, exclusive:
SortedSet sub = s.subSet(low+"\0", high);
The sorted set returned by this method will throw an IllegalArgumentException if the user attempts to insert a element outside the specified range.
Note: this method always returns a view that contains its (low) endpoint. If you need a view that does not contain this endpoint, and the element type allows for calculation of the successor a given value, merely request a tailSet bounded by successor(lowEndpoint). For example, suppose that s is a sorted set of strings. The following idiom obtains a view containing all of the strings in s that are strictly greater than low:
SortedSet tail = s.tailSet(low+"\0");
This implementation allocates the array to be returned, and iterates over the elements in the collection, storing each object reference in the next consecutive element of the array, starting with element 0.
If the collection fits in the specified array with room to spare (i.e., the array has more elements than the collection), the element in the array immediately following the end of the collection is set to null. This is useful in determining the length of the collection only if the caller knows that the collection does not contain any null elements.)
If this collection makes any guarantees as to what order its elements are returned by its iterator, this method must return the elements in the same order.
This implementation checks if the array is large enough to contain the collection; if not, it allocates a new array of the correct size and type (using reflection). Then, it iterates over the collection, storing each object reference in the next consecutive element of the array, starting with element 0. If the array is larger than the collection, a null is stored in the first location after the end of the collection.
This implementation creates an empty string buffer, appends a left square bracket, and iterates over the collection appending the string representation of each element in turn. After appending each element except the last, the string ", " is appended. Finally a right bracket is appended. A string is obtained from the string buffer, and returned.
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.