iSAM
addRemove.cpp
Go to the documentation of this file.
00001 
00028 #include <isam/Slam.h>
00029 #include <isam/slam2d.h>
00030 
00031 using namespace std;
00032 using namespace isam;
00033 using namespace Eigen;
00034 
00035 // note that as the nodes have no IDs to print, it's not easy to know
00036 // which node is which; the user really has to keep track of that, or
00037 // the user could extend the Pose2d_Node class to for example contain
00038 // a string ID.
00039 void print_all(Slam& slam) {
00040   list<Node*> ids = slam.get_nodes();
00041   for (list<Node*>::iterator iter = ids.begin(); iter != ids.end(); iter++) {
00042     Pose2d_Node* pose = dynamic_cast<Pose2d_Node*>(*iter);
00043     cout << pose->value() << endl;
00044   }
00045 }
00046 
00047 int main() {
00048   // locally defined, as nodes and factors below are allocated on the
00049   // stack, and therefore will go out of scope after the end of this
00050   // function; note that you can (and typically have to) dynamically
00051   // allocate, but I used local variables here to make the example
00052   // simpler - see example.cpp for dynamic allocation.
00053   Slam slam;
00054 
00055   Noise noise = Covariance(0.01 * eye(3));
00056 
00057   Pose2d prior(0., 0., 0.);
00058   Pose2d_Node x0;
00059   Pose2d_Node x1;
00060   Pose2d_Node x2;
00061   slam.add_node(&x0);
00062   Pose2d_Factor p_x0(&x0, prior, noise);
00063   slam.add_factor(&p_x0);
00064   Pose2d odo(1., 0., 0.);
00065   slam.add_node(&x1);
00066   Pose2d_Pose2d_Factor o_01(&x0, &x1, odo, noise);
00067   slam.add_factor(&o_01);
00068   slam.add_node(&x2);
00069   Pose2d_Pose2d_Factor o_12(&x1, &x2, odo, noise);
00070   slam.add_factor(&o_12);
00071 
00072   slam.batch_optimization();
00073 
00074   Pose2d_Node a1;
00075   slam.add_node(&a1); // new node for x1
00076   Pose2d_Pose2d_Factor o_01_new(&x0, &a1, odo, noise);
00077   slam.add_factor(&o_01_new);
00078   Pose2d_Pose2d_Factor o_12_new(&a1, &x2, odo, noise);
00079   slam.add_factor(&o_12_new);
00080   slam.remove_node(&x1);
00081 
00082   slam.batch_optimization();
00083 
00084   slam.print_stats();
00085   slam.print_graph();
00086 
00087   print_all(slam);
00088 
00089   return 0;
00090 }
 All Classes Files Functions Variables