Collator
class performs locale-sensitive
String
comparison. You use this class to build
searching and sorting routines for natural language text.
Collator
is an abstract base class. Subclasses
implement specific collation strategies. One subclass,
RuleBasedCollator
, is currently provided with
the Java 2 platform and is applicable to a wide set of languages. Other
subclasses may be created to handle more specialized needs.
Like other locale-sensitive classes, you can use the static
factory method, getInstance
, to obtain the appropriate
Collator
object for a given locale. You will only need
to look at the subclasses of Collator
if you need
to understand the details of a particular collation strategy or
if you need to modify that strategy.
The following example shows how to compare two strings using
the Collator
for the default locale.
// Compare two strings in the default locale Collator myCollator = Collator.getInstance(); if( myCollator.compare("abc", "ABC") < 0 ) System.out.println("abc is less than ABC"); else System.out.println("abc is greater than or equal to ABC");
You can set a Collator
's strength property
to determine the level of difference considered significant in
comparisons. Four strengths are provided: PRIMARY
,
SECONDARY
, TERTIARY
, and IDENTICAL
.
The exact assignment of strengths to language features is
locale dependant. For example, in Czech, "e" and "f" are considered
primary differences, while "e" and "ê" are secondary differences,
"e" and "E" are tertiary differences and "e" and "e" are identical.
The following shows how both case and accents could be ignored for
US English.
//Get the Collator for US English and set its strength to PRIMARY Collator usCollator = Collator.getInstance(Locale.US); usCollator.setStrength(Collator.PRIMARY); if( usCollator.compare("abc", "ABC") == 0 ) { System.out.println("Strings are equivalent"); }
For comparing String
s exactly once, the compare
method provides the best performance. When sorting a list of
String
s however, it is generally necessary to compare each
String
multiple times. In this case, CollationKey
s
provide better performance. The CollationKey
class converts
a String
to a series of bits that can be compared bitwise
against other CollationKey
s. A CollationKey
is
created by a Collator
object for a given String
.
Note: CollationKey
s from different
Collator
s can not be compared. See the class description
for CollationKey
for an example using CollationKey
s.
CANONICAL_DECOMPOSITION corresponds to Normalization Form D as described in Unicode Technical Report #15.
FULL_DECOMPOSITION corresponds to Normalization Form KD as described in Unicode Technical Report #15.
This implementation merely returns
compare((String)o1, (String)o2)
.
For a one time comparison, this method has the best performance. If a given String will be involved in multiple comparisons, CollationKey.compareTo has the best performance. See the Collator class description for an example using CollationKeys.
The implementor must ensure that sgn(compare(x, y)) == -sgn(compare(y, x)) for all x and y. (This implies that compare(x, y) must throw an exception if and only if compare(y, x) throws an exception.)
The implementor must also ensure that the relation is transitive: ((compare(x, y)>0) && (compare(y, z)>0)) implies compare(x, z)>0.
Finally, the implementer must ensure that compare(x, y)==0 implies that sgn(compare(x, z))==sgn(compare(y, z)) for all z.
It is generally the case, but not strictly required that (compare(x, y)==0) == (x.equals(y)). Generally speaking, any comparator that violates this condition should clearly indicate this fact. The recommended language is "Note: this comparator imposes orderings that are inconsistent with equals."
getInstance
methods of this class can return
localized instances.
The array returned must contain at least a Locale
instance equal to Locale.US
.The three values for decomposition mode are:
wait
methods.
The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:
synchronized
statement
that synchronizes on the object.
Class,
by executing a
synchronized static method of that class.
Only one thread at a time can own an object's monitor.
wait
methods.
The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
toString
method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString
method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@
', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify
method or the
notifyAll
method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.The current thread must own this object's monitor.
This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:
A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout); ... // Perform action appropriate to condition }(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).
If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.
Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.
This method should only be called by a thread that is the owner
of this object's monitor. See the notify
method for a
description of the ways in which a thread can become the owner of
a monitor.
This method is similar to the wait
method of one
argument, but it allows finer control over the amount of time to
wait for a notification before giving up. The amount of real time,
measured in nanoseconds, is given by:
1000000*timeout+nanos
In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).
The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:
notify
method
or the notifyAll
method.
timeout
milliseconds plus nanos
nanoseconds arguments, has
elapsed.
The thread then waits until it can re-obtain ownership of the monitor and resumes execution.
As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:
synchronized (obj) { while (<condition does not hold>) obj.wait(timeout, nanos); ... // Perform action appropriate to condition }This method should only be called by a thread that is the owner of this object's monitor. See the
notify
method for a
description of the ways in which a thread can become the owner of
a monitor.