The RuleBasedCollator class is a concrete subclass of Collator that provides a simple, data-driven, table collator. With this class you can create a customized table-based Collator. RuleBasedCollator maps characters to sort keys.

RuleBasedCollator has the following restrictions for efficiency (other subclasses may be used for more complex languages) :

  1. If a special collation rule controlled by a <modifier> is specified it applies to the whole collator object.
  2. All non-mentioned characters are at the end of the collation order.

The collation table is composed of a list of collation rules, where each rule is of one of three forms:

    <modifier>
    <relation> <text-argument>
    <reset> <text-argument>
 
The definitions of the rule elements is as follows:

This sounds more complicated than it is in practice. For example, the following are equivalent ways of expressing the same thing:

 a < b < c
 a < b & b < c
 a < c & a < b
 
Notice that the order is important, as the subsequent item goes immediately after the text-argument. The following are not equivalent:
 a < b & a < c
 a < c & a < b
 
Either the text-argument must already be present in the sequence, or some initial substring of the text-argument must be present. (e.g. "a < b & ae < e" is valid since "a" is present in the sequence before "ae" is reset). In this latter case, "ae" is not entered and treated as a single character; instead, "e" is sorted as if it were expanded to two characters: "a" followed by an "e". This difference appears in natural languages: in traditional Spanish "ch" is treated as though it contracts to a single character (expressed as "c < ch < d"), while in traditional German a-umlaut is treated as though it expanded to two characters (expressed as "a,A < b,B ... &ae;\u00e3&AE;\u00c3"). [\u00e3 and \u00c3 are, of course, the escape sequences for a-umlaut.]

Ignorable Characters

For ignorable characters, the first rule must start with a relation (the examples we have used above are really fragments; "a < b" really should be "< a < b"). If, however, the first relation is not "<", then all the all text-arguments up to the first "<" are ignorable. For example, ", - < a < b" makes "-" an ignorable character, as we saw earlier in the word "black-birds". In the samples for different languages, you see that most accents are ignorable.

Normalization and Accents

RuleBasedCollator automatically processes its rule table to include both pre-composed and combining-character versions of accented characters. Even if the provided rule string contains only base characters and separate combining accent characters, the pre-composed accented characters matching all canonical combinations of characters from the rule string will be entered in the table.

This allows you to use a RuleBasedCollator to compare accented strings even when the collator is set to NO_DECOMPOSITION. There are two caveats, however. First, if the strings to be collated contain combining sequences that may not be in canonical order, you should set the collator to CANONICAL_DECOMPOSITION or FULL_DECOMPOSITION to enable sorting of combining sequences. Second, if the strings contain characters with compatibility decompositions (such as full-width and half-width forms), you must use FULL_DECOMPOSITION, since the rule tables only include canonical mappings.

Errors

The following are errors:

If you produce one of these errors, a RuleBasedCollator throws a ParseException.

Examples

Simple: "< a < b < c < d"

Norwegian: "< a,A< b,B< c,C< d,D< e,E< f,F< g,G< h,H< i,I< j,J < k,K< l,L< m,M< n,N< o,O< p,P< q,Q< r,R< s,S< t,T < u,U< v,V< w,W< x,X< y,Y< z,Z < \u00E5=a\u030A,\u00C5=A\u030A ;aa,AA< \u00E6,\u00C6< \u00F8,\u00D8"

Normally, to create a rule-based Collator object, you will use Collator's factory method getInstance. However, to create a rule-based Collator object with specialized rules tailored to your needs, you construct the RuleBasedCollator with the rules contained in a String object. For example:

 String Simple = "< a< b< c< d";
 RuleBasedCollator mySimple = new RuleBasedCollator(Simple);
 
Or:
 String Norwegian = "< a,A< b,B< c,C< d,D< e,E< f,F< g,G< h,H< i,I< j,J" +
                 "< k,K< l,L< m,M< n,N< o,O< p,P< q,Q< r,R< s,S< t,T" +
                 "< u,U< v,V< w,W< x,X< y,Y< z,Z" +
                 "< \u00E5=a\u030A,\u00C5=A\u030A" +
                 ";aa,AA< \u00E6,\u00C6< \u00F8,\u00D8";
 RuleBasedCollator myNorwegian = new RuleBasedCollator(Norwegian);
 

Combining Collators is as simple as concatenating strings. Here's an example that combines two Collators from two different locales:

 // Create an en_US Collator object
 RuleBasedCollator en_USCollator = (RuleBasedCollator)
     Collator.getInstance(new Locale("en", "US", ""));
 // Create a da_DK Collator object
 RuleBasedCollator da_DKCollator = (RuleBasedCollator)
     Collator.getInstance(new Locale("da", "DK", ""));
 // Combine the two
 // First, get the collation rules from en_USCollator
 String en_USRules = en_USCollator.getRules();
 // Second, get the collation rules from da_DKCollator
 String da_DKRules = da_DKCollator.getRules();
 RuleBasedCollator newCollator =
     new RuleBasedCollator(en_USRules + da_DKRules);
 // newCollator has the combined rules
 

Another more interesting example would be to make changes on an existing table to create a new Collator object. For example, add "&C< ch, cH, Ch, CH" to the en_USCollator object to create your own:

 // Create a new Collator object with additional rules
 String addRules = "&C< ch, cH, Ch, CH";
 RuleBasedCollator myCollator =
     new RuleBasedCollator(en_USCollator + addRules);
 // myCollator contains the new rules
 

The following example demonstrates how to change the order of non-spacing accents,

 // old rule
 String oldRules = "=\u0301;\u0300;\u0302;\u0308"    // main accents
                 + ";\u0327;\u0303;\u0304;\u0305"    // main accents
                 + ";\u0306;\u0307;\u0309;\u030A"    // main accents
                 + ";\u030B;\u030C;\u030D;\u030E"    // main accents
                 + ";\u030F;\u0310;\u0311;\u0312"    // main accents
                 + "< a , A ; ae, AE ; \u00e6 , \u00c6"
                 + "< b , B < c, C < e, E & C < d, D";
 // change the order of accent characters
 String addOn = "& \u0300 ; \u0308 ; \u0302";
 RuleBasedCollator myCollator = new RuleBasedCollator(oldRules + addOn);
 

The last example shows how to put new primary ordering in before the default setting. For example, in Japanese Collator, you can either sort English characters before or after Japanese characters,

 // get en_US Collator rules
 RuleBasedCollator en_USCollator = (RuleBasedCollator)Collator.getInstance(Locale.US);
 // add a few Japanese character to sort before English characters
 // suppose the last character before the first base letter 'a' in
 // the English collation rule is \u2212
 String jaString = "& \u2212 < \u3041, \u3042 < \u3043, \u3044";
 RuleBasedCollator myJapaneseCollator = new
     RuleBasedCollator(en_USCollator.getRules() + jaString);
 
@version
1.25 07/24/98
@author
Helena Shih, Laura Werner, Richard Gillam
RuleBasedCollator constructor. This takes the table rules and builds a collation table out of them. Please see RuleBasedCollator class description for more details on the collation rule syntax.
Parameters
rulesthe collation rules to build the collation table from.
Throws
ParseExceptionA format exception will be thrown if the build process of the rules fails. For example, build rule "a < ? < d" will cause the constructor to throw the ParseException because the '?' is not quoted.
Decomposition mode value. With CANONICAL_DECOMPOSITION set, characters that are canonical variants according to Unicode standard will be decomposed for collation. This should be used to get correct collation of accented characters.

CANONICAL_DECOMPOSITION corresponds to Normalization Form D as described in Unicode Technical Report #15.

Decomposition mode value. With FULL_DECOMPOSITION set, both Unicode canonical variants and Unicode compatibility variants will be decomposed for collation. This causes not only accented characters to be collated, but also characters that have special formats to be collated with their norminal form. For example, the half-width and full-width ASCII and Katakana characters are then collated together. FULL_DECOMPOSITION is the most complete and therefore the slowest decomposition mode.

FULL_DECOMPOSITION corresponds to Normalization Form KD as described in Unicode Technical Report #15.

Collator strength value. When set, all differences are considered significant during comparison. The assignment of strengths to language features is locale dependant. A common example is for control characters ("\u0001" vs "\u0002") to be considered equal at the PRIMARY, SECONDARY, and TERTIARY levels but different at the IDENTICAL level. Additionally, differences between pre-composed accents such as "\u00C0" (A-grave) and combining accents such as "A\u0300" (A, combining-grave) will be considered significant at the IDENTICAL level if decomposition is set to NO_DECOMPOSITION.
Decomposition mode value. With NO_DECOMPOSITION set, accented characters will not be decomposed for collation. This is the default setting and provides the fastest collation but will only produce correct results for languages that do not use accents.
Collator strength value. When set, only PRIMARY differences are considered significant during comparison. The assignment of strengths to language features is locale dependant. A common example is for different base letters ("a" vs "b") to be considered a PRIMARY difference.
Collator strength value. When set, only SECONDARY and above differences are considered significant during comparison. The assignment of strengths to language features is locale dependant. A common example is for different accented forms of the same base letter ("a" vs "ä") to be considered a SECONDARY difference.
Collator strength value. When set, only TERTIARY and above differences are considered significant during comparison. The assignment of strengths to language features is locale dependant. A common example is for case differences ("a" vs "A") to be considered a TERTIARY difference.
Standard override; no change in semantics.
Compares its two arguments for order. Returns a negative integer, zero, or a positive integer as the first argument is less than, equal to, or greater than the second.

This implementation merely returns compare((String)o1, (String)o2) .

Return
a negative integer, zero, or a positive integer as the first argument is less than, equal to, or greater than the second.
Throws
ClassCastExceptionthe arguments cannot be cast to Strings.
@since
1.2
Compares the character data stored in two different strings based on the collation rules. Returns information about whether a string is less than, greater than or equal to another string in a language. This can be overriden in a subclass.
Compares the equality of two collation objects.
Parameters
objthe table-based collation object to be compared with this.
Return
true if the current table-based collation object is the same as the table-based collation object obj; false otherwise.
Convenience method for comparing the equality of two strings based on this Collator's collation rules.
Parameters
sourcethe source string to be compared with.
targetthe target string to be compared with.
Return
true if the strings are equal according to the collation rules. false, otherwise.
Returns an array of all locales for which the getInstance methods of this class can return localized instances. The array returned must contain at least a Locale instance equal to Locale.US .
Return
An array of locales for which localized Collator instances are available.
Returns the runtime class of an object. That Class object is the object that is locked by static synchronized methods of the represented class.
Return
The java.lang.Class object that represents the runtime class of the object. The result is of type {@code Class} where X is the erasure of the static type of the expression on which getClass is called.
Return a CollationElementIterator for the given String.
Return a CollationElementIterator for the given String.
Transforms the string into a series of characters that can be compared with CollationKey.compareTo. This overrides java.text.Collator.getCollationKey. It can be overriden in a subclass.
Get the decomposition mode of this Collator. Decomposition mode determines how Unicode composed characters are handled. Adjusting decomposition mode allows the user to select between faster and more complete collation behavior.

The three values for decomposition mode are:

  • NO_DECOMPOSITION,
  • CANONICAL_DECOMPOSITION
  • FULL_DECOMPOSITION.
See the documentation for these three constants for a description of their meaning.
Gets the Collator for the current default locale. The default locale is determined by java.util.Locale.getDefault.
Return
the Collator for the default locale.(for example, en_US)
Gets the Collator for the desired locale.
Parameters
desiredLocalethe desired locale.
Return
the Collator for the desired locale.
Gets the table-based rules for the collation object.
Return
returns the collation rules that the table collation object was created from.
Returns this Collator's strength property. The strength property determines the minimum level of difference considered significant during comparison. See the Collator class description for an example of use.
Generates the hash code for the table-based collation object
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implementation. A thread waits on an object's monitor by calling one of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes the owner of the object's monitor in one of three ways:

  • By executing a synchronized instance method of that object.
  • By executing the body of a synchronized statement that synchronizes on the object.
  • For objects of type Class, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by calling one of the wait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Throws
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
Set the decomposition mode of this Collator. See getDecomposition for a description of decomposition mode.
Parameters
decompositionModethe new decomposition mode.
Throws
IllegalArgumentExceptionIf the given value is not a valid decomposition mode.
Sets this Collator's strength property. The strength property determines the minimum level of difference considered significant during comparison. See the Collator class description for an example of use.
Parameters
newStrengththe new strength value.
Throws
IllegalArgumentExceptionIf the new strength value is not one of PRIMARY, SECONDARY, TERTIARY or IDENTICAL.
Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())
 
Return
a string representation of the object.
Causes current thread to wait until another thread invokes the method or the method for this object. In other words, this method behaves exactly as if it simply performs the call wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait();
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Throws
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until either another thread invokes the method or the method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens:

  • Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened.
  • Some other thread invokes the notifyAll method for this object.
  • Some other thread interrupts thread T.
  • The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified.
The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

A thread can also wake up without being notified, interrupted, or timing out, a so-called spurious wakeup. While this will rarely occur in practice, applications must guard against it by testing for the condition that should have caused the thread to be awakened, and continuing to wait if the condition is not satisfied. In other words, waits should always occur in loops, like this one:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout);
         ... // Perform action appropriate to condition
     }
 
(For more information on this topic, see Section 3.2.3 in Doug Lea's "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, 2000), or Item 50 in Joshua Bloch's "Effective Java Programming Language Guide" (Addison-Wesley, 2001).

If the current thread is interrupted by another thread while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.

Parameters
timeoutthe maximum time to wait in milliseconds.
Throws
IllegalArgumentExceptionif the value of timeout is negative.
IllegalMonitorStateExceptionif the current thread is not the owner of the object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.
Causes current thread to wait until another thread invokes the method or the method for this object, or some other thread interrupts the current thread, or a certain amount of real time has elapsed.

This method is similar to the wait method of one argument, but it allows finer control over the amount of time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given by:

 1000000*timeout+nanos

In all other respects, this method does the same thing as the method of one argument. In particular, wait(0, 0) means the same thing as wait(0).

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits until either of the following two conditions has occurred:

  • Another thread notifies threads waiting on this object's monitor to wake up either through a call to the notify method or the notifyAll method.
  • The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

As in the one argument version, interrupts and spurious wakeups are possible, and this method should always be used in a loop:

     synchronized (obj) {
         while (<condition does not hold>)
             obj.wait(timeout, nanos);
         ... // Perform action appropriate to condition
     }
 
This method should only be called by a thread that is the owner of this object's monitor. See the notify method for a description of the ways in which a thread can become the owner of a monitor.
Parameters
timeoutthe maximum time to wait in milliseconds.
nanosadditional time, in nanoseconds range 0-999999.
Throws
IllegalArgumentExceptionif the value of timeout is negative or the value of nanos is not in the range 0-999999.
IllegalMonitorStateExceptionif the current thread is not the owner of this object's monitor.
InterruptedExceptionif another thread interrupted the current thread before or while the current thread was waiting for a notification. The interrupted status of the current thread is cleared when this exception is thrown.