heat radiating upward from roof http://people.csail.mit.edu/jaffer/convect

Convection Articles


turbine harnessing convection from skillet

Thermodynamic Basis for Natural Convection from an Isothermal Plate

Aubrey G. Jaffer

Abstract

There are successful theoretical models for laminar natural convection from downward-facing and vertical plates, but not for upward-facing plates. Moreover, there are no successful theoretical models for turbulent natural convection in any plate orientation.

For vertical plates, the laminar formula from Churchill and Chu's 1975 paper successfully fits experimental data over the full range of Rayleigh (Ra) and Prandtl (Pr) numbers, notably better than their turbulent formula in the turbulent regime. This suggests that there may be a principle uniting laminar and turbulent natural convection.

The fundamental laws of thermodynamics make no distinction between laminar and turbulent flows. Natural convection being a non-reversible heat-engine which converts the temperature difference between an object and fluid into fluid flow, the present work derives formulas for natural convection of isothermal flat plates from the thermodynamic constraints on heat-engine efficiency.

The resulting new upward-facing formula is consistent with measurements from Fujii and Imura (1972), Goldstein, Sparrow, and Jones (1973), and Lloyd and Moran (1974) over nearly 11 decades of Ra. The vertical formula is consistent with measurements from Kobus and Wedekind (1995).

Full Article

Thermodynamic Basis for Natural Convection from an Isothermal Plate

Gray-code (self-similar) ramp-permutation roughness; L/ε≈13.86
Gray-code self-similar roughness

Skin-Friction and Forced Convection from Rough and Smooth Plates

Aubrey G. Jaffer

Abstract

Since the 1930s, theories for skin-friction drag from plates with rough surfaces have been based on analogy to turbulent flow within pipes having rough interiors. Failure of this analogy at low Reynolds number (Re) flow rates has frustrated attempts to create a comprehensive theory.

By introducing the concept of a self-similar roughness, the present work derives exact formulas for a plate's skin-friction drag coefficient and turbulent forced convection given its root-mean-squared height-of-roughness and isotropic spatial period. These formulas are in agreement with measurements from Pimenta, Moffat, and Kays (1975), Bergstrom, Akinlade, and Tachie (2005), and experiments conducted by the present author.

The present work also derives an exact formula for skin-friction coefficient of a smooth plate; this formula is in very close agreement with measurements from Smith and Walker (1959) and Spalding and Chi (1964) spanning 4 decades of Re. Its new formula for turbulent forced convection is in agreement with Lienhard (2020), while expanding the range to all fluid Prandtl numbers.

Full Article

Skin-Friction and Forced Convection from Rough and Smooth Plates

Turbulent Mixed Convection from an Isothermal Plate

Aubrey G. Jaffer

Abstract

When forced flow over an isothermal plate is turbulent, its total mixed convection can be computed as an algebraic function of only the forced and natural convections and the orientation of that surface.

Presented are new correlations for turbulent mixed convection from an isothermal rectangular surface having at least one horizontal edge and flow parallel to an edge of that surface.

Also presented are series of total convection measurements at Reynolds numbers from 2500 to 25000 of the five combinations of horizontal and vertical plate orientation with turbulent horizontal and vertical flow, as well as at some intermediate angles.

Full Article

Turbulent Mixed Convection from an Isothermal Plate

Convection Machine electronics

Convection Measurement Apparatus and Methodology

Aubrey G. Jaffer

Abstract

Presented are the design and operating methodology of an apparatus constructed to make measurements of forced convection from an isothermal plate with a precisely rough surface. Measurements with a 2.5% root-sum-squared measurement uncertainty were achieved.

Mixed convection measurements at various plate orientations were also made, driving the development of a theory of turbulent mixed convection from any rectangular plate having at least one horizontal edge.

Full Article

Convection Measurement Apparatus and Methodology

Supplementary Data

In the temperature versus time graphs in the supplementary files, the green, blue, and black traces are the plate, (insulated) back, and ambient temperatures respectively. The upper red trace is a simulation of the plate temperature with the back and average ambient temperatures as inputs. The middle red trace is a simulation of the back temperature with the plate and ambient temperatures as inputs. The lower red line is the ambient temperature averaged over the measurement period.

The diamonds on the plate temperature trace mark the beginning and end of the measurement period, the ending temperature difference with ambient being at most half of the peak temperature difference with ambient. The simulated plate temperature is reset to the real plate temperature at the first diamond.

Underneath each temperature graph is a graph of the air velocity versus time for mixed convection runs and Rayleigh number versus time for natural convection runs.

Natural Convection
natural.pdfNatural Convection at a dozen Rayleigh numbers in vertical and horizontal orientations.
angles.pdfNatural Convection at angles from −90 to +90
Mixed Convection
mixed-up.pdf3mm roughness face up; horizontal forced flow
mixed-up.pdf1mm roughness face up; horizontal forced flow
mixed-aid.pdf3mm roughness face vertical; upward forced flow
mixed-aid2.pdf1mm roughness face vertical; upward forced flow
mixed-vt.pdf3mm roughness face vertical; horizontal forced flow
mixed-vt.pdf1mm roughness face vertical; horizontal forced flow
mixed-opp.pdf3mm roughness face vertical; downward forced flow
mixed-opp.pdf1mm roughness face vertical; downward forced flow
mixed-dn.pdf3mm roughness face down; horizontal forced flow
mixed-dnnt.pdf1mm roughness face down; horizontal forced flow
mixed-dnnt2.pdf1mm roughness face down; horizontal forced flow
mixed-dnrs.pdf1mm roughness face down; horizontal forced flow
mixed-aid+84.pdf1mm roughness face down inclined aiding +84.5°
mixed-opp+85.pdf1mm roughness face down inclined opposing +84.5°
Zip of Supplementary Files
supplementary.zipZip Archive of All Files

Copyright © 2016, 2017, 2018, 2019, 2020, 2021 Aubrey Jaffer

I am a guest and not a member of the MIT Computer Science and Artificial Intelligence Laboratory.  My actions and comments do not reflect in any way on MIT.
SimRoof
agj @ alum.mit.edu
Go Figure!