iSAM
glc.cpp
00001 
00029 #include <ctime>
00030 #include <isam/Slam.h>
00031 #include <isam/slam2d.h>
00032 #include <isam/glc.h>
00033 
00034 using namespace std;
00035 using namespace isam;
00036 using namespace Eigen;
00037 
00038 MatrixXd get_info (Slam *slam) {
00039   const SparseSystem& R = slam->get_R();
00040   const int *a_to_r = R.a_to_r(); // column ordering
00041   MatrixXd Rsub(R.num_rows(), R.num_cols());
00042   // get colums of R for each of the inds
00043   for (int i=0; i<R.num_rows(); i++) {
00044     for (int j=0; j<R.num_cols(); j++) {
00045       Rsub(i,j) = R(a_to_r[i], a_to_r[j]);
00046     }
00047   }
00048 
00049   return Rsub.transpose()*Rsub;
00050 }
00051 
00052 void print_all(Slam& slam) {
00053   list<Node*> ids = slam.get_nodes();
00054   for (list<Node*>::iterator iter = ids.begin(); iter != ids.end(); iter++) {
00055     Pose2d_Node* pose = dynamic_cast<Pose2d_Node*>(*iter);
00056     cout << pose->value() << endl;
00057   }
00058 }
00059 
00060 double snrv (void) {
00061   srand(time(0));
00062   double U = rand() / double(RAND_MAX);
00063   double V = rand() / double(RAND_MAX);
00064   // Box-Muller method
00065   return sqrt (-2.0*log(U)) * cos(2.0*M_PI*V);
00066 }
00067 
00068 Pose2d add_noise(Pose2d in, double sigma) {
00069   Pose2d out (in.x()+sigma*snrv(),
00070               in.y()+sigma*snrv(),
00071               in.t()+sigma*snrv());
00072   return out;
00073 }
00074 
00075 Point2d add_noise(Point2d in, double sigma) {
00076   Point2d out (in.x()+sigma*snrv(),
00077                in.y()+sigma*snrv());
00078   return out;
00079 }
00080 
00081 int main() {
00082   // setup a simple graph
00083   // known poses
00084   Pose2d x0 (0,  0,   M_PI/9.0);
00085   Pose2d x1 (10, 10,  0.0     );
00086   Pose2d x2 (20, 20,  M_PI/6.0);
00087   Pose2d x3 (30, 30, -M_PI/4.0);
00088   Pose2d x4 (40, 40, -M_PI/8.0);
00089   // known landmarks
00090   Point2d la (100, 100);
00091   
00092   // mesurements
00093   Pose2d z0 = x0;
00094   Pose2d z01 = x1.ominus(x0);
00095   Pose2d z12 = x2.ominus(x1);
00096   Pose2d z23 = x3.ominus(x2);
00097   Pose2d z34 = x4.ominus(x3);
00098   Pose2d z13 = x3.ominus(x1);
00099   // landmark measurement
00100   Point2d z1a = x1.transform_to(la);
00101     
00102   // add noise to measurements
00103   double sigma = 0.01;
00104   MatrixXd Q = sigma*sigma*eye(3);
00105   Noise Qsqinf = Information(Q.inverse());
00106   MatrixXd Q2 = sigma*sigma*eye(2);
00107   Noise Q2sqinf = Information(Q2.inverse());
00108   z0  = add_noise(z0,  sigma);
00109   z01 = add_noise(z01, sigma);
00110   z12 = add_noise(z12, sigma);
00111   z23 = add_noise(z23, sigma);
00112   z34 = add_noise(z34, sigma);
00113   z13 = add_noise(z13, sigma);
00114   z1a = add_noise(z1a, sigma);
00115   
00116   // nodes
00117   Pose2d_Node*  n0 = new Pose2d_Node();
00118   Pose2d_Node*  n1 = new Pose2d_Node();
00119   Pose2d_Node*  n2 = new Pose2d_Node();
00120   Pose2d_Node*  n3 = new Pose2d_Node();
00121   Pose2d_Node*  n4 = new Pose2d_Node();
00122   Point2d_Node* na = new Point2d_Node();
00123   
00124   // make graph
00125   Slam slam;
00126   Properties prop;
00127   prop.verbose = true; prop.quiet = false; prop.method = GAUSS_NEWTON;
00128   slam.set_properties(prop);
00129   
00130   // add nodes to graph
00131   slam.add_node(n0);
00132   slam.add_node(n1);
00133   slam.add_node(n2),
00134   slam.add_node(n3);
00135   slam.add_node(n4);
00136   slam.add_node(na);
00137     
00138   // create factors and add them to the graph
00139   Pose2d_Factor* z0f = new Pose2d_Factor(n0, z0, Qsqinf);
00140   slam.add_factor(z0f);
00141   Pose2d_Pose2d_Factor* z01f = new Pose2d_Pose2d_Factor(n0, n1, z01, Qsqinf);
00142   slam.add_factor(z01f);
00143   Pose2d_Pose2d_Factor* z12f = new Pose2d_Pose2d_Factor(n1, n2, z12, Qsqinf);
00144   slam.add_factor(z12f);
00145   Pose2d_Pose2d_Factor* z23f = new Pose2d_Pose2d_Factor(n2, n3, z23, Qsqinf);
00146   slam.add_factor(z23f);
00147   Pose2d_Pose2d_Factor* z34f = new Pose2d_Pose2d_Factor(n3, n4, z34, Qsqinf);
00148   slam.add_factor(z34f);
00149   Pose2d_Pose2d_Factor* z13f = new Pose2d_Pose2d_Factor(n1, n3, z13, Qsqinf);
00150   slam.add_factor(z13f);
00151   Pose2d_Point2d_Factor* z1af = new Pose2d_Point2d_Factor(n1, na, z1a, Q2sqinf);
00152   slam.add_factor(z1af);
00153   
00154   slam.batch_optimization();
00155   slam.print_stats();
00156   ofstream f; f.open ("before.graph"); slam.write(f); f.close();
00157   //slam.print_graph();
00158   //print_all(slam);
00159   
00160   // get true marginal distribution over p(x0, x2, x3, x4)
00161   list<Node*> nodes_subset;
00162   nodes_subset.push_back(n0);
00163   nodes_subset.push_back(n2);
00164   nodes_subset.push_back(n3);
00165   nodes_subset.push_back(n4);
00166   MatrixXd P_true = slam.covariances().marginal(nodes_subset);
00167   //MatrixXd L_true = get_info (&slam);
00168   VectorXd mu_true(12);
00169   mu_true.segment<3>(0) = n0->value().vector();
00170   mu_true.segment<3>(3) = n2->value().vector();
00171   mu_true.segment<3>(6) = n3->value().vector();
00172   mu_true.segment<3>(9) = n4->value().vector();  
00173   
00174   // remove node 1 using GLC ========================================
00175   bool sparse = true;  // sparse approximate or dense exact
00176   vector<Factor*> felim = glc_elim_factors (n1); //usefull for local managment of factors
00177   //vector<Factor*> fnew = glc_remove_node (slam, n1, sparse); // not root shifted
00178   GLC_RootShift rs;
00179   vector<Factor*> fnew = glc_remove_node (slam, n1, sparse, &rs); // root shifted
00180   // ================================================================
00181   cout << felim.size() << " factor(s) removed." << endl;
00182   cout << fnew.size() << " new GLC factor(s) added." << endl;
00183   slam.batch_optimization();
00184   slam.print_stats();
00185   f.open ("after.graph"); slam.write(f); f.close();
00186 
00187   // get glc marginal distribution over p(x0, x2, x3, x4)
00188   MatrixXd P_glc = slam.covariances().marginal(nodes_subset);
00189   //MatrixXd L_glc = get_info (&slam);
00190   VectorXd mu_glc(12);
00191   mu_glc.segment<3>(0) = n0->value().vector();
00192   mu_glc.segment<3>(3) = n2->value().vector();
00193   mu_glc.segment<3>(6) = n3->value().vector();
00194   mu_glc.segment<3>(9) = n4->value().vector();  
00195 
00196   // calcualte the KLD
00197   int n = mu_glc.size();
00198   double A = (P_glc.inverse() * P_true).trace();
00199   VectorXd du = mu_glc - mu_true;
00200   // deal with difference in angles
00201   for(int i=0; i<du.size(); i++) {
00202     if(i % 3 == 2)
00203       du(i) = standardRad(du(i));
00204   }   
00205   double B = du.transpose() * P_glc.inverse() * du;
00206   double C = log(P_true.determinant()) - log(P_glc.determinant());
00207   double kld = 0.5*(A + B - C - n);
00208   cout << "KLD: " << kld << endl;
00209   
00210   return 0;
00211 }
 All Classes Files Functions Variables