00001
00028
00029
00030 #pragma once
00031
00032 #include <string>
00033 #include <sstream>
00034 #include <math.h>
00035 #include <Eigen/Dense>
00036
00037 #include "Node.h"
00038 #include "Factor.h"
00039 #include "Pose3d.h"
00040 #include "Point3dh.h"
00041
00042 namespace isam {
00043
00044 class MonocularMeasurement {
00045 friend std::ostream& operator<<(std::ostream& out, const MonocularMeasurement& t) {
00046 t.write(out);
00047 return out;
00048 }
00049
00050 public:
00051 double u;
00052 double v;
00053 bool valid;
00054
00055 MonocularMeasurement(double u, double v) : u(u), v(v), valid(true) {}
00056 MonocularMeasurement(double u, double v, bool valid) : u(u), v(v), valid(valid) {}
00057
00058 Eigen::Vector3d vector() const {
00059 Eigen::Vector3d tmp(u, v);
00060 return tmp;
00061 }
00062
00063 void write(std::ostream &out) const {
00064 out << "(" << u << ", " << v << ")";
00065 }
00066 };
00067
00068 class MonocularCamera {
00069 double _f;
00070 Eigen::Vector2d _pp;
00071 double _b;
00072
00073 public:
00074
00075 MonocularCamera() : _f(1), _pp(Eigen::Vector2d(0.5,0.5)) {}
00076 MonocularCamera(double f, const Eigen::Vector2d& pp) : _f(f), _pp(pp) {}
00077
00078 inline double focalLength() const {return _f;}
00079
00080 inline Eigen::Vector2d principalPoint() const {return _pp;}
00081
00082 MonocularMeasurement project(const Pose3d& pose, const Point3dh& Xw) const {
00083 Point3dh X = pose.transform_to(Xw);
00084
00085 double x = X.y();
00086 double y = X.z();
00087 double z = X.x();
00088 double w = X.w();
00089 if ((z/w) > 0.) {
00090 double fz = _f / z;
00091 double u = x * fz + _pp(0);
00092 double v = y * fz + _pp(1);
00093 return MonocularMeasurement(u, v);
00094 } else {
00095 return MonocularMeasurement(0., 0., false);
00096 }
00097 }
00098
00099 Point3dh backproject(const Pose3d& pose, const MonocularMeasurement& measure,
00100 double distance = 5.) const {
00101 double lx = (measure.u-_pp(0));
00102 double ly = (measure.v-_pp(1));
00103 double lz = _f;
00104 if (distance<0.) {
00105 std::cout << "Warning: MonocularCamera.backproject called with negative distance\n";
00106 }
00107 double lw = 1./distance;
00108 Point3dh X(lz, lx, ly, lw);
00109
00110 return pose.transform_from(X);
00111 }
00112
00113 };
00114
00115
00116
00121 class Monocular_Factor : public FactorT<MonocularMeasurement> {
00122 Pose3d_Node* _pose;
00123 Point3d_Node* _point;
00124 Point3dh_Node* _point_h;
00125 MonocularCamera* _camera;
00126
00127 public:
00128
00129
00130 Monocular_Factor(Pose3d_Node* pose, Point3dh_Node* point, MonocularCamera* camera,
00131 const MonocularMeasurement& measure, const isam::Noise& noise)
00132 : FactorT<MonocularMeasurement>("Monocular_Factor", 2, noise, measure),
00133 _pose(pose), _point(NULL), _point_h(point), _camera(camera) {
00134
00135
00136 _nodes.resize(2);
00137 _nodes[0] = pose;
00138 _nodes[1] = point;
00139 }
00140
00141
00142 Monocular_Factor(Pose3d_Node* pose, Point3d_Node* point, MonocularCamera* camera,
00143 const MonocularMeasurement& measure, const isam::Noise& noise)
00144 : FactorT<MonocularMeasurement>("Monocular_Factor", 2, noise, measure),
00145 _pose(pose), _point(point), _point_h(NULL), _camera(camera) {
00146 _nodes.resize(2);
00147 _nodes[0] = pose;
00148 _nodes[1] = point;
00149 }
00150
00151 void initialize() {
00152 require(_pose->initialized(), "Monocular_Factor requires pose to be initialized");
00153 bool initialized = (_point_h!=NULL) ? _point_h->initialized() : _point->initialized();
00154 if (!initialized) {
00155 Point3dh predict = _camera->backproject(_pose->value(), _measure);
00156
00157 predict = Point3dh(predict.vector()).normalize();
00158 if (_point_h!=NULL) {
00159 _point_h->init(predict);
00160 } else {
00161 _point->init(predict.to_point3d());
00162 }
00163 }
00164 }
00165
00166 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {
00167 Point3dh point = (_point_h!=NULL) ? _point_h->value(s) : _point->value(s);
00168 MonocularMeasurement predicted = _camera->project(_pose->value(s), point);
00169 if (predicted.valid == true) {
00170 return (predicted.vector() - _measure.vector());
00171 } else {
00172
00173 return Eigen::Vector2d::Zero();
00174 }
00175 }
00176
00177 };
00178
00179 }